Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 639–642 | Cite as

Calculated elastic constants of alumina-mullite ceramic particles

  • H. Ledbetter
  • M. Dunn
  • M. Couper
Papers

Abstract

Using two theoretical models, we estimated the isotropic elastic constants of an alumina-mullite ceramic composite. The alumina phase, 20% by volume, consisted of brickshaped particles with a 4:1 aspect ratio embedded in a mullite matrix (mullite = 3Al2O3·2SiO2). We took alumina elastic-constant values from the literature, and we measured mullite's elastic constants using a megahertz-frequency pulse-echo method. The two theoretical models, Datta-Ledbetter and Mori-Tanaka, proceed from very different viewpoints. The Datta-Ledbetter model uses the long-wavelength limit of a scattered plane wave ensemble-average approach. The model estimates the speed of a plane harmonic wave, averages the scattered field by the Waterman-Truell procedure and uses Lax's quasicrystalline approximation to sum over pairs. The Mori-Tanaka method proceeds by estimating the average matrix stress in a material containing ellipsoidal inclusions. For randomly oriented ellipsoids, it extends Eshelby's solution for a single ellipsoidal inclusion. Both models lack adjustable parameters. Surprisingly, the two models with different physical approaches give practically identical results. A rough check on our estimates is that they lead to correct predictions of the elastic constants of an alumina-mullite-particle aluminium-matrix composite.

Keywords

Elastic Constant Ceramic Composite Scattered Field Alumina Phase Ellipsoidal Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ledbetter, S. Kim and W. Kriven, J. Amer. Ceram. Soc. in press. Google Scholar
  2. 2.
    W. Tefft, J. Res. Nat. Bur. Stands. 70A (1966) 277.CrossRefGoogle Scholar
  3. 3.
    H. Ledbetter, in “Dynamic Elastic-Modulus Measurements” (ASTM, Philadelphia, 1990) p. 135.CrossRefGoogle Scholar
  4. 4.
    H. Ledbetter and S. Datta, J. Acoust. Soc. Amer. 79 (1986) 239.CrossRefGoogle Scholar
  5. 5.
    Idem, Z. Metallkde. 83 (1992) 195.Google Scholar
  6. 6.
    J. Willis, in “Advances in Supplied Mechanics”, Vol. 21 (Academic, New York, 1981) p. 1.Google Scholar
  7. 7.
    H. Ledbetter and S. Datta, JSME Int. J. 34 (1991) 194.Google Scholar
  8. 8.
    H. Ledbetter and C. Fortunko, in “IEEE Ultrasonics Symposium” (IEEE, New York, 1991) p. 1065.Google Scholar
  9. 9.
    W. Voigt, Ann. Phys. 38 (1889) 573.CrossRefGoogle Scholar
  10. 10.
    A. Reuss, Angew. Math. Mech. 9 (1929) 49.CrossRefGoogle Scholar
  11. 11.
    J. Eshelby, Proc. Roy. Soc. A241 (1957) 376.CrossRefGoogle Scholar
  12. 12.
    T. Mura, “Micromechanics of Defects in Solids” (Nijhoff, The Hague, 1987) p. 77–84.CrossRefGoogle Scholar
  13. 13.
    T. Mori and K. Tanaka, Acta Metall 21 (1973) 571.CrossRefGoogle Scholar
  14. 14.
    Y. Takao, T. Chou and M. Taya, Trans. ASME 49 (1982) 536.CrossRefGoogle Scholar
  15. 15.
    M. Taya and R. Arsenault, “Metal Matrix Composites, Thermomechanical Behaviorℰd (Pergamon, Oxford, 1989) p. 32.Google Scholar
  16. 16.
    Y. Benveniste, Mech. Mater. 6 (1987) 147.CrossRefGoogle Scholar
  17. 17.
    T. Chen, G. Dvorak and Y. Benveniste, J. Appl. Mech. 59 (1992) 539.CrossRefGoogle Scholar
  18. 18.
    J. Willis, J. Mech. Phys. Solids 25 (1977) 185.CrossRefGoogle Scholar
  19. 19.
    G. Weng, Int. J. Engng Sci. 22 (1984) 845.CrossRefGoogle Scholar
  20. 20.
    S. Datta and H. Ledbetter, in “Wave Propagation in Nonhomogeneous Media and Ultrasonic Nondestructive Evaluation” (ASME, New York, 1984) p. 123.Google Scholar
  21. 21.
    M. Dunn and H. Ledbetter, J. Appl. Mech. in press.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. Ledbetter
    • 1
  • M. Dunn
    • 2
  • M. Couper
    • 3
  1. 1.National Institute of Standards and TechnologyBoulderUSA
  2. 2.Mechanical Engineering DepartmentUniversity of ColoradoBoulderUSA
  3. 3.Comalco Research CentreThomastownAustralia

Personalised recommendations