Journal of Materials Science

, Volume 30, Issue 3, pp 633–638 | Cite as

Morphology of single crystals of poly (hydroxybutyrate) and copolymers of hydroxybuty rate and hydroxyvalerate

  • C. Birley
  • J. Briddon
  • K. E. Sykes
  • P. A. Barker
  • S. J. Organ
  • P. J. Barham


Single crystals of poly(hydroxybutyrate), and copolymers of hydroxybutyrate and hydroxyvalerate, have been grown from a variety of solvents and their morphology studied. In all cases the crystals appear elongated, with the crystallographic a axis along the long axis of the crystals. Screw dislocations (which act as branch points and can lead to large crystal aggregates) have been observed, and solvents, e.g. octanol in which more of these dislocations occur, have been identified. Decoration of the crystals with polyethylene shows that the fold plane is the (0 1 0) plane, while crystallographic and crystallinity arguments require successive adjacent folds to be along 〈1 1 0〉 directions. It is argued that folding is along [1 1 0] on the top, and [1 ¯1 0] on the bottom surface of a crystal.


Polymer Polyethylene Material Processing Branch Point Bottom Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Dawes, “Microbial Energetics” (Chapman and Hall, New York, 1986).Google Scholar
  2. 2.
    Y. Doi, “Microbial Polyesters” (VCH, New York, 1990).Google Scholar
  3. 3.
    P. A. Holmes, in “Developments in Crystalline Polymers-2”, edited by D. C. Basset (Elsevier, London, 1987) pp. 1–65.Google Scholar
  4. 4.
    P. J. Barham, J. Mater. Sci. 19 (1984) 3826.CrossRefGoogle Scholar
  5. 5.
    P. J. Barham, A. Keller, E. L. Otun and P. A. Holmes, ibid. 19 (1984 2781.CrossRefGoogle Scholar
  6. 6.
    P. J. Barham and A. Keller, J. Polym. Sci. B Polym. Phys. Ed. 24 (1986) 69.CrossRefGoogle Scholar
  7. 7.
    E. L. Welland, J. Stejney, A. Halter and A. Keller, Polym. Commun. 30 (1989) 302.Google Scholar
  8. 8.
    C. Lauzier, R. H. Marchessault, P. Smith and H. Chanzy, Polymer 33 (1992) 823.CrossRefGoogle Scholar
  9. 9.
    J. F. Revol, H. D. Chanzy, Y. Deslandes and R. H. Marchessault, Polymer 30 (1989) 1973.CrossRefGoogle Scholar
  10. 10.
    R. H. Marchessault, S. Coulomb, H. Morikawa, K. Okamura and J. F. Revol, Can. J. Chem. 59 (1981) 38.CrossRefGoogle Scholar
  11. 11.
    E. L. Otun, PhD thesis, University of Bristol (1985).Google Scholar
  12. 12.
    H. Mitomo, P. J. Barham and A. Keller, Polym. J. 19 (1987) 1241.CrossRefGoogle Scholar
  13. 13.
    J. C. Wittman and B. Lotz, J. Polym. Sci. Polym. Phys. Ed 23 (1985) 205.CrossRefGoogle Scholar
  14. 14.
    Idem., in “Materials Science and Technology”, Vol. 12, edited by E. Thomas (VCH, New York, 1993).Google Scholar
  15. 15.
    S. J. Organ and A. Keller, J. Polym. Sci. Polym. Phys. Ed. 25 (1978) 2409.CrossRefGoogle Scholar
  16. 16.
    D. C. Bassett, Polymer 33 (1992) 2467.CrossRefGoogle Scholar
  17. 17.
    P. A. Barker, PhD thesis, University of Bristol (1992).Google Scholar
  18. 18.
    R. H. Marchessault, Macromol. 19 (1986) 2865.CrossRefGoogle Scholar
  19. 19.
    “Faraday Discussions of the Royal Society of Chemistry”, Vol. 68 edited by F. C. Frank, J. D. Hoffman, C. M. Guttman and E. A. DiMarzio (Fletcher, Norwich, 1979) pp. 7 and 177.Google Scholar
  20. 20.
    D. Seebach, H. M. BÜrger, H. M. MÜller, U. D. Lengweiler, A. K. Beck, K. E. Sykes, P. A. Barker and P. J. Barham, Helv. Chim. Acta 77 (1994) 1099.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. Birley
    • 1
  • J. Briddon
    • 1
  • K. E. Sykes
    • 1
  • P. A. Barker
    • 1
  • S. J. Organ
    • 1
  • P. J. Barham
    • 1
  1. 1.H. H. Wills Physics LaboratoryBristolUK

Personalised recommendations