Journal of Materials Science

, Volume 30, Issue 3, pp 628–632 | Cite as

Characterization of silver-palladium submicronic powders

Part I Morphology and thermal properties
  • E. Delarue
  • M. Mostafavi
  • M. O. Delcourt
  • D. Regnault


Various properties of submicronic silver-palladium powders (70/30 and 75/25 Ag/Pd % wt/wt), recently obtained by a new process of precipitation in aqueous solution, are described. These powders are intended to be used in the multilayer ceramic capacitor industry. The morphology of the particles has been analysed through various measurements, such as SEM images, tap density, BET surface area, and the size distribution by a sedimentation technique. The powders were found to be made of spherical shaped particles of mean diameter close to 0.3 μm with a narrow size distribution. The individual grains were agglomerated only to a small extent. After being conditioned as a paste by blending with an organic binder, screen-printed and fired, the particles sintered into a conductive layer of low resistivity (15–30 μWcm for 2 μm thickness) with only a few remaining voids, as observed by SEM. Thermal measurements indicated no melting of a pure silver phase at 960 °C, thus indicating that alloying was achieved before this temperature.


Sedimentation Shaped Particle Small Extent Narrow Size Distribution Sedimentation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. G. Ferrier, A. R. Berzins and N. M. Davey, Platinum Metals Rev. 29 (1985) 175.Google Scholar
  2. 2.
    L. C. Hoffmann. Adv. Ceram. 19 (1986) 71.Google Scholar
  3. 3.
    K. Nagashima, T. Himeda and A. Kato, J. Mater. Sci 26 (1991) 2477.CrossRefGoogle Scholar
  4. 4.
    M. H. La Branche, J. G. Pepin and W. Borland, in “Proceedings of the ASM Thick film Conference”, Atlanta, GA June 1988.Google Scholar
  5. 5.
    J. G. Pepin, J. Mater. Sci. Mater. Electron. 2 (1991) 34.CrossRefGoogle Scholar
  6. 6.
    S. F. Wang and W. Huebner, J. Am. Ceram. Soc. 74 (1991) 1349.CrossRefGoogle Scholar
  7. 7.
    S. F. Wang, W. Huebner and C. Y. Wang, ibid. 75 (1992) 2232.CrossRefGoogle Scholar
  8. 8.
    D. L. Thiebault, in “Precious Metals”, edited by A. K. Mehta and R. M. Nadkarni (International Metal Precious Institute and Nielson, Austin, Texas, 1992) p. 257.Google Scholar
  9. 9.
    F. Yala, C. Haut, C. Severac, C. Grattepain, E. Delarue and M. O. Delcourt, J. Mater. Sci. 30 (1995) in press.Google Scholar
  10. 10.
    S. R. Cole Jr, J. Am. Ceram. Soc. 68 (1985) C106.CrossRefGoogle Scholar
  11. 11.
    J. G. Pepin, W. Borland, P. O'Callaghan and R. J. Young, ibid. 72 (1989) 2287.CrossRefGoogle Scholar
  12. 12.
    B. Svensson, Annal. Physik. 5 (1932) 699.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • E. Delarue
    • 1
  • M. Mostafavi
    • 1
  • M. O. Delcourt
    • 1
  • D. Regnault
    • 2
  1. 1.Laboratoire de Physico-Chimie des Rayonnements associé au CNRS URA 75, Bat. 350Université Paris-SudOrsay CedexFrance
  2. 2.CLALParisFrance

Personalised recommendations