Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 601–606 | Cite as

Differential melting in compacted high-modulus melt-spun polyethylene fibres

  • M. A. Kabeel
  • D. C. Bassett
  • R. H. Olley
  • P. J. Hine
  • I. M. Ward
Papers

Abstract

The compaction of high-modulus melt-spun polyethylene fibres has been investigated for compaction temperatures above the optimum. After such treatment the specimens are liable to be non-uniform because of differential melting. Individual compacted fibres are observed to melt not only from the outside inwards, but also in certain internal regions, depending upon the availability of local free volume. The regions of different stability have been identified and inferences drawn concerning the structure of the initial fibres. It is suggested in particular that the longitudinal regions of deficit density (which exhibit cratering in transverse sections and melt before their surroundings) are a result of initial crystallization occurring within a rigid framework inside the fibre, possibly nucleated on a strained molecular network. The presence of banded recrystallization around residual fibres demonstrates that this phenomenon develops via interaction of neighbouring lamellae as they grow.

Keywords

Polymer Crystallization Recrystallization Compaction Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Hine, I. M. Ward, R. H. Olley and D. C. Bassett, J. Mater. Sci. 28 (1993) 316.CrossRefGoogle Scholar
  2. 2.
    R. H. Olley, D. C. Bassett, P. J. Hine and I. M. Ward, ibid. 28 (1993) 1107.CrossRefGoogle Scholar
  3. 3.
    M. A. Kabeel, D. C. Bassett, R. H. Olley, P. J. Hine, and I. M. Ward, ibid. 29 (1994) 4694.CrossRefGoogle Scholar
  4. 4.
    H. D. Keith, F. J. Padden and R. G. Vadimsky, J. Appl. Phys. 37 (1966) 4027.CrossRefGoogle Scholar
  5. 5.
    A. Gałeski and E. Piórkowska, J. Polym. Sci. Phys. Ed. B21 (1983) 1313.CrossRefGoogle Scholar
  6. 6.
    Z. Bartczak and A. Gałeski, Polymer 27 (1986) 544.CrossRefGoogle Scholar
  7. 7.
    R. H. Olley and D. C. Bassett, J. Macromol Sci. Phys. B33 (1994) 211.CrossRefGoogle Scholar
  8. 8.
    D. C. Bassett, R. H. Olley and I. A. M. Al Raheil, Polymer 29 (1988) 1539.CrossRefGoogle Scholar
  9. 9.
    D. C. Bassett, Phil. Trans. R. Soc. A 348 (1994) 1.Google Scholar
  10. 10.
    G. Capaccio, I. M. Ward, Coll. Polym. Sci. 46 (1982) 260.Google Scholar
  11. 11.
    G. A. J. Orchard, G. R. Davies and I. M. Ward, Polymer 25 (1984) 1203.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. A. Kabeel
    • 1
  • D. C. Bassett
    • 1
  • R. H. Olley
    • 1
  • P. J. Hine
    • 2
  • I. M. Ward
    • 2
  1. 1.J. J. Thomson Physical Laboratory, WhiteknightsUniversity of ReadingReadingUK
  2. 2.IRC in Polymer Science and TechnologyUniversity of LeedsLeedsUK

Personalised recommendations