Journal of Materials Science

, Volume 30, Issue 5, pp 1379–1385 | Cite as

Investigation of equilibrium and phase stability in the liquid/solid state in nickel-based wrought superalloys

  • G. I. Rosen
  • S. F. Dirnfeld
  • M. Bamberger
  • B. Prinz


Isothermal holding experiments between the liquidus temperatures, TL, and the solidus temperatures, TS, were carried out on nickel-based wrought superalloys. It was found that during solidification the elements aluminium, cobalt and tungsten tend to dissolve in the γ matrix whereas titanium, tantalum and molybdenum tend to segregate into the liquid. Molybdenum and titanium cause the formation of brittle σ and η phases, respectively, after prolonged holding at elevated temperatures, in accordance with the results of New-PHACOMP (new phase computation).


Polymer Aluminium Titanium Cobalt Brittle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Taylor and R. W. Floyd, J. Inst. Met. 81 (1952–1953) 451.Google Scholar
  2. 2.
    A. Taylor, J. Met. 8 (1956) 1356.Google Scholar
  3. 3.
    N. C. Oforka and B. B. Argent, J. Less-Common Met. 114 (1985) 97.CrossRefGoogle Scholar
  4. 4.
    S. Chakravorthy, S. Sadiq and D. R. F. West, J. Mater. Sci. Technol. 2 (1986) 110.CrossRefGoogle Scholar
  5. 5.
    N. C. Oforka and C. W. Haworth, Scand. J. Met. 16 (1987) 184.Google Scholar
  6. 6.
    P. Willemin and M. Durand-Charre, J. Mater. Sci. 25 (1990) 168.CrossRefGoogle Scholar
  7. 7.
    E. Gozlan, M. Bamberger, S. F. Dirnfeld, B. Prinz and J. Klodt, Mater. Sci. Eng. A141 (1991) 85.CrossRefGoogle Scholar
  8. 8.
    W. J. Boesch and J. S. Slaney, Met. Prag. 86 (1964) 109.Google Scholar
  9. 9.
    L. R. Woodyatt, C. T. Sims and H. J. Beattie Jr, Trans. AIME 236 (1966) 519.Google Scholar
  10. 10.
    M. Morinaga, N. Yukawa, H. Adachi and H. Ezaki, in “Proceedings of the 5th International Symposium on Superalloys”, edited by M. Gell, Seven Springs, Champion, PA, USA, 7–11 October 1984 (AIME, Warrendale, 1984) p. 523.Google Scholar
  11. 11.
    M. Morinaga, N. Yukawa, H. Ezaki and H. Adachi, Philos. Mag. A 51 (1985) 223.CrossRefGoogle Scholar
  12. 12.
    J. R. Mihalisin and D. L. Pasquine, in ‘Proceedings of the International Symposium on Structural Stability in Superalloys”, Seven Springs, PA, Vol. 1 (1968) p. 134.CrossRefGoogle Scholar
  13. 13.
    O. H. Kriege and J. M. Baris, Trans. ASM 62 (1969) 195.Google Scholar
  14. 14.
    L. Darken and G. W. Gurry, “Physical Chemistry of Metals” (McGraw-Hill, New York, 1953) p. 86.Google Scholar
  15. 15.
    W. Hume-Rothery and G. V. Raynor, “Structure of Metals and Alloys” (Institute of Metals, London, 1954).Google Scholar
  16. 16.
    C. T. Sims, N. S. Stoloff and W. C. Hagel, “Superalloys II — High Temperature Materials for Aerospace and Industrial Power” (Wiley, New York, 1987).Google Scholar
  17. 17.
    E. Gozlan, M. Bamberger, S. F. Dirnfeld and B. Prinz, J. Mater. Sci. 27 (1992) 3869.CrossRefGoogle Scholar
  18. 18.
    J. K. Tien and R. N. Jarrett, in “Proceedings of Conference on High Temperature Alloys for Gas Turbines”, edited by R. Brunetaud, Liege, Belgium, 4–6 October 1982 (Reidel, Dordrecht, 1982) p. 423.Google Scholar
  19. 19.
    G. I. Rosen, S. F. Dirnfeld, M. Bamberger and B. Prinz, High Temp. Mater. Proc. 12 (1993) 183.CrossRefGoogle Scholar
  20. 20.
    Idem Z. Metallkde 85 (1994) 127.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. I. Rosen
    • 1
  • S. F. Dirnfeld
    • 2
  • M. Bamberger
    • 2
  • B. Prinz
    • 3
  1. 1.Materials DepartmentNational LaboratoryRoskildeDenmark
  2. 2.Department of Materials EngineeringTechnion, Israel Institute of TechnologyTechnion City, HaifaIsrael
  3. 3.Metallgesellschaft AGMetall-LaboratoriumFrankfurt am MainGermany

Personalised recommendations