Journal of Materials Science

, Volume 30, Issue 5, pp 1361–1366 | Cite as

Stability of lead magnesium niobate under hydrothermal conditions

  • K. Yanagisawa


Low-crystalline pyrochlore powder of lead magnesium niobate was treated under various hydrothermal conditions. The perovskite phase crystallized in pure water above 580 °C, but hydrothermal treatments at high temperatures for a long time decreased the amount of the perovskite phase and increased that of the cubic pyrochlore phase. The addition of lead oxide enhanced the formation of the perovskite, but not magnesium oxide. The perovskite phase was not stable in many salt solutions even with the addition of lead oxide, but its stability was increased in solutions consisting of large anions and cations.


Oxide Polymer Magnesium Perovskite Salt Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Swartz, T. R. Shrout, W. A. Schulze and L. E. Cross, J Am. Ceram. Soc. 67 (1984) 311.CrossRefGoogle Scholar
  2. 2.
    S. Nomura and K. Uchino, Ferroelectrics 41 (1982) 117.CrossRefGoogle Scholar
  3. 3.
    L. F. Francis, Y.-J. Oh and D. A. Payne, J. Mater. Sci. 25 (1990) 5007.CrossRefGoogle Scholar
  4. 4.
    E. Goo, T. Yamamoto and K. Okazaki, J. Am. Ceram. Soc. 69 (1986) C-188.CrossRefGoogle Scholar
  5. 5.
    P. Ravindranathan, S. Komarneni and R. Roy, ibid. 73 (1990) 1024.CrossRefGoogle Scholar
  6. 6.
    J. Chen and M. P. Harmer, ibid. 73 (1990) 68.CrossRefGoogle Scholar
  7. 7.
    M. Lejeune and J. P. Boilot, Am. Ceram. Soc. Bull. 64 (1985) 679.Google Scholar
  8. 8.
    Idem, Mater. Res. Butt. 20 (1985) 493.CrossRefGoogle Scholar
  9. 9.
    K. Furukawa, S. Fujiwara, and T. Ogasawara, in “Proceedings of the Japan-US Study Seminar on Dielectric and Piezoelectric Ceramics” (1982) p. T-4.Google Scholar
  10. 10.
    H-C. Wang and W. A. Schulze, J. Am. Ceram. Soc. 73 (1990) 825.CrossRefGoogle Scholar
  11. 11.
    S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17 (1982) 1245.CrossRefGoogle Scholar
  12. 12.
    J. P. Guha and H. U. Anderson, J. Am. Ceram. Soc. 69 (1986) C-287.Google Scholar
  13. 13.
    T. R. Shrout, P. Papet, S. Kim and G-S. Lee, ibid. 73 (1990) 1862.CrossRefGoogle Scholar
  14. 14.
    F. Chaput, J. P. Boilot, M. Lejeune, R. Papiernik and L. G. Hubert-Pfalzgraf, ibid. 72 (1989) 1355.CrossRefGoogle Scholar
  15. 15.
    K. Okuwada, S. Nakamura, M. Imai and K. Kakuno, Jpn J. Appl. Phys. 29 (1990) 1153.CrossRefGoogle Scholar
  16. 16.
    W. J. Dawson, Bull. Am. Ceram. Soc. 67 (1988) 1673.Google Scholar
  17. 17.
    F. Imoto and H. Iida, Yogyo-Kyokai-shi (J. Ceram. Soc. Jpn) 80 (1972) 197.CrossRefGoogle Scholar
  18. 18.
    M. Watanabe and Y. Shimizu, in “Proceedings of the Annual Meeting of the Ceramic Society of Japan” (The Ceramics Society of Japan, Tokyo, 1989) p. 294.Google Scholar
  19. 19.
    Idem, in “Proceedings of the Annual Meeting of Ceramic Society of Japan” (The Ceramics Society of Japan, Tokyo, 1990) p. 138.Google Scholar
  20. 20.
    K. Yanagisawa, J. Mater. Sci. Lett. in press.Google Scholar
  21. 21.
    M. L. Barsukova, V. A. Kuznetsov, A. N. Lobachev and V. V. Lider, Sov. Phys. Crystallogr 16 (1971) 178.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. Yanagisawa
    • 1
  1. 1.Research Laboratory of Hydrothermal Chemistry, Faculty of ScienceKochi UniversityKochiJapan

Personalised recommendations