Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1352–1356 | Cite as

The influence of stacking fault energy on the creep behaviour of Ni-Cu-solid-solution alloys at intermediate temperatures

  • M. S. Soliman
Papers

Abstract

The creep characteristics of Ni-Cu alloys at intermediate temperatures (T<0.55Tm, where Tm is the absolute melting temperature), including the stress exponent (≥ 7) and the activation energy for creep (which is less than the activation energy for lattice diffusion), suggest that the creep mechanism is dislocation climb controlled by pipe diffusion. The present analysis shows that the creep rates of these alloys are consistent with a rate equation of the form \(\dot \varepsilon = 50A \frac{{D_p Gb}}{{kT}} (\Gamma /Gb)^3 (\sigma /G)^7\) where A is a dimensionless constant with a value of ∼1013, Dp is the pipe diffusion coefficient, G is the shear modulus, b is the magnitude of the Burgers vector, kT is the Boltzmann's constant times the absolute temperature, Γ is the stacking fault energy and σ is the applied stress. The Γ-values used in the present investigation were determined using high-temperature, latticediffusion, dislocation-climb-controlled creep rates. In addition, this equation can satisfactorily predict the pipe-diffusion-controlled creep behaviour in pure metals at intermediate temperatures.

Keywords

Activation Energy Shear Modulus Applied Stress Rate Equation Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. D. Sherby and P. M. Burke, Prog. Mater. Sci. 13 (1967) 325.Google Scholar
  2. 2.
    J. E. Bird, A. K. Mukherjee and J. E. Dorn, Correla- tion Between High-temperature Creep Behavior and Structure, Report Number UCRL-19056, Lawrence Radiation Laboratory, University of California, Berkeley (1969).Google Scholar
  3. 3.
    J. Weertman, Trans. ASM 61 (1968) 681.Google Scholar
  4. 4.
    F. A. Mohamed and T. G. Langdon, Acta Metall. 22 (1974) 779.CrossRefGoogle Scholar
  5. 5.
    A. S. Argon and S. Takeuchi, ibid. 29 (1981) 1877.CrossRefGoogle Scholar
  6. 6.
    M. S. Soliman, Res Mechanica 21 (1987) 155.Google Scholar
  7. 7.
    B. A. Chin, G. M. Pound and W. D. Nix, Metall. Trans. A 8 (1977) 1517.CrossRefGoogle Scholar
  8. 8.
    C. J. Herring, Appl. Phys. 21 (1950) 437.CrossRefGoogle Scholar
  9. 9.
    R. Fuents-Samaniega and W. D. Nix, Scripta Metall. 15 (1981) 15.CrossRefGoogle Scholar
  10. 10.
    F. A. Mohamed, Mater. Sci. Engng. 61 (1983) 149.CrossRefGoogle Scholar
  11. 11.
    M. S. Soliman and F. A. Mohamed, Metall. Trans. A 15 (1984) 1893.CrossRefGoogle Scholar
  12. 12.
    M. S. Soliman and I. El-Galali, J. Mater. Sci. Lett. 7 (1988) 1027.CrossRefGoogle Scholar
  13. 13.
    K. Park, E. J. Lavernia and F.A. Mohamed, Acta Metall. 38 (1990) 1837.CrossRefGoogle Scholar
  14. 14.
    C. R. Barrett and O. D. Sherby, Trans. AIME 230 (1964) 1322.Google Scholar
  15. 15.
    C. K. Davies, P. W. Davies and B. Wilshire, Phil. Mag. 12 (1965) 827.CrossRefGoogle Scholar
  16. 16.
    S. L. Robinson and O. D. Sherby, Acta Metall. 17 (1969) 109.CrossRefGoogle Scholar
  17. 17.
    E. C. Norman and S.A. Duran, ibid. 18 (1970) 723.CrossRefGoogle Scholar
  18. 18.
    H. Luthy, A. K. Miller and O. D. Sherby, ibid. 28 (1980) 169.CrossRefGoogle Scholar
  19. 19.
    H. E. Evans and G. Knowles, Metal. Sci. J. 14 (1980) 152.CrossRefGoogle Scholar
  20. 20.
    S. H. Suh, J. B. Cohen and J. Weertman, Metall. Trans. A, 14 (1983) 117.CrossRefGoogle Scholar
  21. 21.
    H. E. Evans and G. Knowles, Acta Metall, 25 (1977) 963.CrossRefGoogle Scholar
  22. 22.
    O. D. Sherby and J. Weertman, ibid., 27 (1979) 387.CrossRefGoogle Scholar
  23. 23.
    J. R. Spingarn, D. M. Barnett and W.D. Nix, ibid., 27 (1979) 1549.CrossRefGoogle Scholar
  24. 24.
    J. P. Poirier, ibid., 26 (1978) 629.CrossRefGoogle Scholar
  25. 25.
    B. Burton, Phil. Mag. A 45 (1982) 657.CrossRefGoogle Scholar
  26. 26.
    Idem. ibid. 46 (1982) 607.CrossRefGoogle Scholar
  27. 27.
    I. D. Choi, D. K. Matlock and D. L. Olson, Metall. Trans. A 21 (1990) 2601.CrossRefGoogle Scholar
  28. 28.
    H. J. Frost and M. F. Ashby, “Deformation Mechanism Maps” (Pergamon Press, Oxford, 1982).Google Scholar
  29. 29.
    F. A. Mohamed and T. G. Langdon, J. Appl. Phys. 45 (1974) 1965.CrossRefGoogle Scholar
  30. 30.
    P. C. J. Gallagher, Metall. Trans, 1 (1970) 2429.Google Scholar
  31. 31.
    K. Monma, H. Suto and M. Oikawa, J. Jpn Inst. Metals 28 (1964) 258.CrossRefGoogle Scholar
  32. 32.
    B. L. Jones and C. M. Sellars, Metal. Sci. J. 4 (1970) 96.CrossRefGoogle Scholar
  33. 33.
    M. S. Soliman, Unpublished Research.Google Scholar
  34. 34.
    R. M. Bonesteel and O. D. Sherby, Acta Metall. 14 (1966) 385.CrossRefGoogle Scholar
  35. 35.
    W. R. Johnson, C. R. Barrett and W. D. Niw, Metall. Trans. 3 (1972) 963.CrossRefGoogle Scholar
  36. 36.
    B. A. Chin, W. D. Nix and G. M. Pound, Metall. Trans. A 8 (1977) 1523.CrossRefGoogle Scholar
  37. 37.
    J. C. M. Hwany and R. W. Balluffi, Scripta Metall. 12 (1978) 709.CrossRefGoogle Scholar
  38. 38.
    A. M. Brown and M. F. Ashby, Acta Metall. 28 (1980) 1085.CrossRefGoogle Scholar
  39. 39.
    M. S. Soliman, Scripta Metall. Mater. (in press).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. S. Soliman
    • 1
  1. 1.Department of Mechanical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations