Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1343–1351 | Cite as

Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel

  • Myoung Youp Song
Papers

Abstract

The hydriding and dehydriding kinetics of Mg are reviewed. It is reported that the hydriding and dehydriding reactions of Mg are nucleation-controlled under certain conditions and progress by a mechanism of nucleation and growth, and that the hydriding rates of Mg are controlled by the diffusion of hydrogen through a growing Mg hydride layer.

The hydriding and dehydriding kinetics of Mg can be improved in consequence by a treatment such as mechanical alloying, which can facilitate the nucleation by creating defects and shorten diffusion distances by reducing the effective particle size of Mg.

The hydriding and dehydriding characteristics of mechanically-treated Mg and mechanically-alloyed mixtures with the compositions Mg-x wt Ni (x=5, 10,25 and 55) are studied.

The Mg2Ni phase develops in the mechanically-alloyed mixtures. The Mg-10wt% Ni and Mg-25 wt% Ni mixtures are activated easily, show much larger hydrogen storage capacities and much higher hydriding rates, and higher dehydriding rates, than other magnesium- based alloys or mixtures.

Keywords

Magnesium Hydride Diffusion Distance Mechanical Alloy Hydrogen Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vose, “Metal Hydrides”, U.S. Patent 2 944 (1961) p. 587.Google Scholar
  2. 2.
    J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6(12) (1967) 2220.CrossRefGoogle Scholar
  3. 3.
    J. J. Reilly and R. H. Wiswall Jr., Inorg. Chem. 7(11) (1968) 2254.CrossRefGoogle Scholar
  4. 4.
    D. L. Douglass, Metall. Trans. A, 6 (1975) 2179.CrossRefGoogle Scholar
  5. 5.
    D. L. Douglass, in A. F. Anderson and A. J. Maeland (eds.), “Hydrides for Energy Storage”, Proceedings International Symposium Geilo, Norway, August 1977, pp. 151–184.Google Scholar
  6. 6.
    M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem. 40 (1978) 765.CrossRefGoogle Scholar
  7. 7.
    M. Pezat, A. Hbika, B. Darriet and P. Hagenmuller, French Anvar Patent 78 203 82, 1978. Mater. Res. Bull 14 (1979) 377.CrossRefGoogle Scholar
  8. 8.
    M. Pezat, B. Darriet and P. Hagenmuller, J. Less-Common Met. 74 (1980) 427.CrossRefGoogle Scholar
  9. 9.
    Q. Wang, J. Wu, M. Au and L. Zhang, in “Hydrogen Energy Progress V”, Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada, July 1984. Vol. 3, edited by T. N. Veziroğlu and J. B. Taylor (Pergamon, New York) pp. 1279–1290.Google Scholar
  10. 10.
    B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull 11 (1976) 1441.CrossRefGoogle Scholar
  11. 11.
    F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met. 74 (1980) 323.CrossRefGoogle Scholar
  12. 12.
    B. Bogdanovic, Int. J. Hydrogen Energy, 9(11) (1984) 937.CrossRefGoogle Scholar
  13. 13.
    E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10) (1982) 787.CrossRefGoogle Scholar
  14. 14.
    E. Akiba, K. Nomura and S. Ono, J. Less-Common Met. 89 (1983) 145.CrossRefGoogle Scholar
  15. 15.
    J. M. Boulet and N. Gerard, J. Less-Common Met. 89 (1983) 151.CrossRefGoogle Scholar
  16. 16.
    S. Ono, Y. Ishido, E. Akiba, K. Jindo, Y. Sawada, I. Kitagawa and T. Kakutani, in “Hydrogen Energy Progress V”, Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada, July 1984, Vol. 3, edited by T. N. Veziroglu and J. B. Taylor (Pergamon, New York) pp. 1291–1302.Google Scholar
  17. 17.
    C. M. Stander, Z. Physik Chem. 104 (1977) 229.CrossRefGoogle Scholar
  18. 18.
    C. M. Stander, J. Inorg. Nucl. Chem. 39 (1977) 221.CrossRefGoogle Scholar
  19. 19.
    A. Karty, J. Grunzweig-Genossar and P. S. Rudman, J. Appl. Phys. 50(11) (1979) 7200.CrossRefGoogle Scholar
  20. 20.
    J. Isler, Thèse de 3ème cycle, Université de Dijon (France), 1979.Google Scholar
  21. 21.
    A. S. Pederson, J. Kjoller, B. Larsen and B. Vigeholm, in “Hydrogen Energy Progress V”, Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada, July 1984, Vol. 3, edited by T. N. Veziro#x011F;lu and J. B. Taylor, (Pergamon, New York) pp. 1269–1277.Google Scholar
  22. 22.
    M. Y. Song, M. Pezat, B. Darriet, J. Y. Lee and P. Hagenmuller, J. Mater. Sci. 21 (1986) 346.CrossRefGoogle Scholar
  23. 23.
    M. Y. Song, B. Darriet, M. Pezat, J. Y. Lee and P. Hagenmuller, J. Less-Common Met. 118 (1896) 235.CrossRefGoogle Scholar
  24. 24.
    B. Vigeholm, K. Jensen, B. Larsen and A. Schroder Pedersen, J. Less-Common Met. 131 (1987) 133.CrossRefGoogle Scholar
  25. 25.
    M. Y. Song, M. Pezat, B. Darriet and P. Hagenmuller, J. Solid State Chem. 56 (1985) 191.CrossRefGoogle Scholar
  26. 26.
    M. Y. Song, E. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, J. Less-Common Met. 131 (1987) 71.CrossRefGoogle Scholar
  27. 27.
    M. Y. Song, (in press)Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Myoung Youp Song
    • 1
  1. 1.Department of Materials EngineeringChonbuk National UniversityKorea

Personalised recommendations