Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1338–1342 | Cite as

In situ reacted TiB2-reinforced mullite

  • C. T. Ho
Papers

Abstract

In situ formation of TiB2 in mullite matrix through the reaction of TiO2, boron and carbon has been studied. In hot-pressed and pressureless-sintered samples, in addition to TiB2, TiC was also found to be dispersed phases in mullite matrix. However, in the case of pressurelesssintered samples, mullite/TiB2 composite with 98% relative density can be obtained through a preheating step held at 1300 °C for longer than 3 h and then sintering at a temperature above 1600 °C. Hot-pressed composite containing 30 vol% TiB2 gives a flexural strength of 427 MPa and a fracture toughness of 4.3 MPam1/2. Pressureless-sintered composite containing 20 vol% TiB2 gives a flexural strength of 384 MPa and a fracture toughness of 3.87 MPam1/2.

Keywords

Polymer TiO2 Boron Fracture Toughness Relative Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Wei and P. F. Becher, Am. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  2. 2.
    N. Claussen, Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II, Edited by N. Claussen, M. Ruhle and A. Heuer (The American Ceramic Society, Columbus, Ohio, 1984) p. 3225.Google Scholar
  3. 3.
    N. Claussen and G. Petzow, J. Phys. 47 Colloq. (Cl) (1986) Cl693-Cl702.CrossRefGoogle Scholar
  4. 4.
    P. F. Becher and T. N. Tiegs, J. Am. Ceram. Soc. 70 (1987) 651.CrossRefGoogle Scholar
  5. 5.
    N. Takahashi, Y. Iyori and H. Hara, Hitachi Kinzoku. Giho 1 (1985) 41.Google Scholar
  6. 6.
    Yu. I. Krylov, Izv. Akad. Nauk SSSR Neorg. Mater. 12 (1976) 1684.Google Scholar
  7. 7.
    G. V. Samsonon and I. M. Vinitskii, “Handbook of Refractory Compounds” (IFI/Plenum, New York, 1980) p. 40.CrossRefGoogle Scholar
  8. 8.
    H. R. Baumgartner and R. A. Steiger, J. Am. Ceram. Soc. 67 (1984) 207.CrossRefGoogle Scholar
  9. 9.
    S. C. Chuang, C. T. Kuo, C. S. Lee, C. T. Ho and A. K. Li, J. Mater. Sci. 27 (1992) 5844.CrossRefGoogle Scholar
  10. 10.
    C. T. Ho, J. Mater. Research 8 (1993) (in press).Google Scholar
  11. 11.
    T. Tani and S. Wada, J. Mater. Sci. 25 (1990) 157.CrossRefGoogle Scholar
  12. 12.
    M. W. Chase Jr, C. A. Davies, J. R. Downey jr, D. J. Frurip, R. A. Macdonald and A. N. Syverud, in “JANAF Thermochemical Tables”, 3rd Edn., Part II (American Chemical Society and the American Institue of Physics for the National Bureau of Standards, New York, 1985) p. 274.Google Scholar
  13. 13.
    C. Basudin, F. Cambier, and L. Delaey, J. Mater. Sci. 21 (1986) 4024.CrossRefGoogle Scholar
  14. 14.
    A. G. Evans and K.T. Faber, J. Am. Ceram. Soc. 64 (1981) 394.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. T. Ho
    • 1
  1. 1.Department of Mechanical EngineeringNational Yun-Lin Polytechnic InstituteYun-LinTaiwan, Republic of China

Personalised recommendations