Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1327–1332 | Cite as

The application of the etch-pit method to quantitative texture analysis

  • K. T. Lee
  • G. deWit
  • A. Morawiec
  • J. A. Szpunar
Papers

Abstract

The etch-pit method is a useful technique for studying the grain orientation in polycrystalline materials. In this paper, the etch-pit method is extended to obtain a quantitative analysis of the texture of materials. From the experimental results, the orientation distribution function (ODF) and the misorientation distribution function (MODF) can be calculated. The computer program developed for this analysis returns the grain size distribution of different texture components and the frequency of coincidence site lattice (CSL) boundaries, as well as other data. This information is used to analyse the grain growth and texture development in transformer steel.

Keywords

Polymer Grain Size Quantitative Analysis Computer Program Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Illgen, Pract. Metallogr. 6 (1969) 363.Google Scholar
  2. 2.
    Luo Yang, Acta Metall. Sin. 13 (1977) 93.Google Scholar
  3. 3.
    C. Barrett, “Structure of Metals”, (McGraw-Hill, New York, 1966).Google Scholar
  4. 4.
    Éva Tassy-Betz and J. Prohászka, Metallography 7 (1974) 91.CrossRefGoogle Scholar
  5. 5.
    G. E. G. Tucker and P. C. Murphy, J. Inst. Met. 8 (1952) 235.Google Scholar
  6. 6.
    Luo Yang, Wang Zhen-Chin and Li Wen-Chen, Prakt. Met. 20 (1983) 194–200, 232–44.Google Scholar
  7. 7.
    Luo Yang and Lü Qichun, Acta Metall. Sin. 15 (1979) 235.Google Scholar
  8. 8.
    A. Böttcher, T. Gerber and K. Lücke, Mater. Sci.and Tech. 8 (1992) 16.CrossRefGoogle Scholar
  9. 9.
    G. Abbruzzese, A. Campopiano and S. Fortunati, Textures and Microstructures, Vols 14–18 (1991) 775.CrossRefGoogle Scholar
  10. 10.
    S. Fortunati, G. Abbruzzese and P. E. Di Nunzio, Mater. Sci. Forum, Vols 94–96 (1992) 431.CrossRefGoogle Scholar
  11. 11.
    H. J. Bunge, “Texture analysis in Materials Science”, (Butterworths, London, 1982).Google Scholar
  12. 12.
    J. K. Mackenzie, Biometrika 45 (1958) 229.CrossRefGoogle Scholar
  13. 13.
    D. C. Handscomb, Canad. J. Math. 10 (1988) 85.CrossRefGoogle Scholar
  14. 14.
    D. G. Brandon, Acta Metall. 14 (1966) 1479.CrossRefGoogle Scholar
  15. 15.
    J. Harase and R. Shimizu, Trans. JIMS. 29 (1988) 388.CrossRefGoogle Scholar
  16. 16.
    Idem, Acta Metall. 40 (1992) 1101.CrossRefGoogle Scholar
  17. 17.
    G. Palumbo, P. J. King, K. T. Aust, U. Erb and P. C. Lichtenberger, Scripta Metall. 25 (1991) 1775.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. T. Lee
    • 1
  • G. deWit
    • 1
  • A. Morawiec
    • 1
  • J. A. Szpunar
    • 1
  1. 1.Department of Metallurgical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations