Journal of Materials Science

, Volume 30, Issue 5, pp 1313–1320 | Cite as

Effects of manganese dispersoid on the mechanical properties in Al-Zn-Mg alloys

  • Dong Seok Park
  • Soo Woo Nam


In order to investigate the strengthening effect of manganese dispersoid in manganeseadded Al-Zn-Mg alloys, specially designed alloys with various manganese content were prepared and evaluated. The manganese dispersoid in the alloy is found to increase the strength significantly without losing much elongation. The strengthening effect originates from the fact that the manganese dispersoid behaves as the non-shearable particle which is composed of Al, Mn and Zn. It can be concluded that the improvement of mechanical properties by the manganese dispersoid without losing much elongation is due to the strengthening effect produced by the pinning action of the dispersoid on dislocation glide and the enhancement effect in elongation caused by a homogenization of slip. Meanwhile, the manganese dispersoid and soluble manganese element in the peak-aged manganeseadded Al-Zn-Mg alloys are observed not to influence the width of the precipitate-free zones (PFZ) and the kinetics of precipitates such as η′ and GP zone (solute rich cluster).


Polymer Mechanical Property Manganese Material Processing Enhancement Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. G. Garett and J. F. Knott, Met. Trans. 9A (1978) 1187.CrossRefGoogle Scholar
  2. 2.
    J. S. Santner, Met. Trans. 9A (1978) 769.CrossRefGoogle Scholar
  3. 3.
    H. Westengen, L. Auran and O. Reiso, Aluminum 57 (1981) 797.Google Scholar
  4. 4.
    Idem, ibid 56 (1980) 768.Google Scholar
  5. 5.
    F. H. Dix, Jr., Trans. ASM 42 (1950) 1057.Google Scholar
  6. 6.
    Van Lanker, in “Metallurgy of Aluminum Alloys,” (edited by Wiley, New York, 1967) p. 128.Google Scholar
  7. 7.
    R. F. Sanders, Jr. and E. A. Stake, Jr., Mater. Sci. Eng. 28 (1977) 53.CrossRefGoogle Scholar
  8. 8.
    B. Thundal and R. Sundberg, J. Inst. Metals. 97 (1969) 160.Google Scholar
  9. 9.
    W. B. Pearson, in “Handbook of Lattice Spacing and Structure of Metals and Alloys,” (edited by Pergamon Press, London, 1958) p. 138.Google Scholar
  10. 10.
    D. Adenis, J. P. Moulin and A. Guilhaudis, Mem. Sci.Rev. Met. 66 (1966) 135.Google Scholar
  11. 11.
    A. J. Bryant, J. Inst. Metals 94 (1966) 94.Google Scholar
  12. 12.
    D. S. Thompson, B. S. Subramanya, and S. A. Levy, Met. Trans. 2 (1971) 114.CrossRefGoogle Scholar
  13. 13.
    W. F. Smith and N. J. Grant, Met. Trans. 1 (1970) 979.Google Scholar
  14. 14.
    J. Lendavi, I. Kovacs, T. Ungar. J. Lakner and K. Baniz Aluminum 5 (1980) 453.Google Scholar
  15. 15.
    D. B. Williams, in “Practical Analytical Electron Microscopy in Materials Science,” (edited by Verlag Chemie International Bethlehem, PA, 1984) p. 67.Google Scholar
  16. 16.
    L. F. Mondolfo, in “Aluminium Alloys; Structure and Properties,” edited by (Butterworths, London, 1976) p. 847.Google Scholar
  17. 17.
    P. N. Adler, R. Delasi, Met. Trans. 8A (1977) 1185.CrossRefGoogle Scholar
  18. 18.
    D. S. Thomson, Met. Trans. 6A (1975) 671.CrossRefGoogle Scholar
  19. 19.
    A. K. Sachdev, ibid. 21A (1990) 165.CrossRefGoogle Scholar
  20. 20.
    M. O. Spiedel, in “International Conference on Fundamental Aspects of Stress Corrosion Cracking,” edited by R. W. Staehle, A. J. Forty and D. Van Rooyen (National Association of Corrosion Engineers, Houston, Texas, 1969) p. 561.Google Scholar
  21. 21.
    G. Thomas and J. Nutting, J. Inst. Metals 88 (1959–60) 81.Google Scholar
  22. 22.
    Dong Seok Park and Soo Woo Nam, J. Mater. Sci. Letters 10 (1991) 397.CrossRefGoogle Scholar
  23. 23.
    E. Di Russo, M. Conserva, F. Gatto and H. Markus, Met. Trans. 4 (1973) 113.CrossRefGoogle Scholar
  24. 24.
    ASTM Standards, in “Annual Book of ASTM Standards”, Section 2 (ASTM, Philadelphia, (1986) p. 329.Google Scholar
  25. 25.
    R. E. Stoltz and R. M. Pelloux, Met. Trans. 7A (1976) 1295.CrossRefGoogle Scholar
  26. 26.
    A. Kelly and R. B. Nicholson, in Progress in Materials Science,” Vol. 1, edited by (Pergamon Press, New York, 1963) p. 306.Google Scholar
  27. 27.
    G. Greethan and R. W. K. Honeycomble, J. Inst. Metal 89 (1960–61) 13.Google Scholar
  28. 28.
    J. M. Dowling and J. W. Martin, Acta Metall. 24 (1976) 1147.CrossRefGoogle Scholar
  29. 29.
    K. C. Pince and J. W. Martin, ibid. 27 (1979) 1408.Google Scholar
  30. 30.
    A. K. Busby, L. Edwards and J. W. Martin, Mater. Sci. and Tech. 2 (1986) 363.CrossRefGoogle Scholar
  31. 31.
    J. A. Walsh, K. V. Jata and E. A. Starke, Acta Metall. 37 (1989) 2861.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Dong Seok Park
    • 1
  • Soo Woo Nam
    • 2
  1. 1.Defense Quality Assurance AgencySeoulKorea
  2. 2.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations