Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1290–1294 | Cite as

Hydrogen trapping in an Al-2.1 wt % Li alloy

  • Y. Iijima
  • S. Yoshida
  • H. Saitoh
Papers

Abstract

Hydrogen trapping in an Al-2.1 wt % Li alloy aged up to typical stages in the age-hardening curve, has been studied by measuring the tritium release rate after charging. The distribution of hydrogen in the aged alloy has been studied by tritium electron microautoradiography. It has been found that the coherent δ′ precipitate and the incoherent δ precipitate act as a trapping site for hydrogen, while the semi-coherent δ′ precipitate does not trap hydrogen. A dislocation has been found to be capable of trapping hydrogen, while hydrogen trapping by the grain boundary has not been observed.

Keywords

Hydrogen Polymer Release Rate Tritium Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Sanders Jr and E. A. Starke Jr (eds), “Aluminum-Lithium Alloys”, (Met. Soc. AIME, Warrendale, PA, 1981).Google Scholar
  2. 2.
    E. A. Starke Jr and T. H. Sanders, Jr (eds), “Aluminum-Lithium Alloys II (Met. Soc. AIME, Warrendale, PA 1983).Google Scholar
  3. 3.
    C. Baker, P. J. Gregson, S. J. Harris and C. J. Peel (eds), “Aluminum-Lithium Alloys III”, (Institute of Metals, London, 1986).Google Scholar
  4. 4.
    D. Webster, in “Aluminum-Lithium Alloys”, edited by T. H. Sanders Jr and E. A. Starke Jr (Met. Soc. AIME, Warrendale, PA, 1981) p. 228.Google Scholar
  5. 5.
    Idem, in “Aluminum-Lithium Alloys III”, edited by C. Baker, P. J. Gregson, S. J. Harris and C. J. Peel (Institute of Metals, London, 1986) p. 602.Google Scholar
  6. 6.
    B. Noble and G. E. Thompson, Met. Sci. J. 5 (1971) 114.CrossRefGoogle Scholar
  7. 7.
    D. B. Williams and J. W. Edington, Met. Sci. J. 9 (1975) 529.CrossRefGoogle Scholar
  8. 8.
    H. Suzuki, M. Kanno and N. Hayashi, J. Jpn Inst. Light Metals 31 (1981) 122.CrossRefGoogle Scholar
  9. 9.
    R. Nozato and G. Nakai, Trans. Jpn Inst. Metals 18 (1977) 679.CrossRefGoogle Scholar
  10. 10.
    S. Ceresara, A. Giarda and A. Sanckez, Philos. Mag. 35 (1977) 97.CrossRefGoogle Scholar
  11. 11.
    T. Takahashi and T. Sato, J. Jpn Inst. Light Metals 36 (1986) 207.CrossRefGoogle Scholar
  12. 12.
    K. Hono, S. S. Babu, K. Hiraga, R. Okano and T. Sakurai, Acta Metall. Mater. 40 (1992) 3027.CrossRefGoogle Scholar
  13. 13.
    G. R. Caskey Jr, in “Advanced Techniques for Characterizing Hydrogen in Metals”, edited. by N. F. Fiore and B. J. Berkowitz (TMS-AIME, Warrendale, PA, 1982) p.61Google Scholar
  14. 14.
    J. P. Laurent and G. Lapasset, J. Appl. Rad. Isotopes 24 (1973) 213.CrossRefGoogle Scholar
  15. 15.
    H. Saitoh, Y. Iijama and K. Hirano, J. Mater. Sci., 29 (1994) 5739.CrossRefGoogle Scholar
  16. 16.
    Idem, J. Jpn Inst. Light Metals 36 (1986) 286.CrossRefGoogle Scholar
  17. 17.
    Idem, in “Proceedings of 4th International Conference on Hydrogen and Materials”, edited by N. P. Chen and P. Y. Azou (ISCMCM, Saint Ouen, 1989) p. 647.Google Scholar
  18. 18.
    Y. Iijima, S. Yoshida, H. Saitoh, H. Tanaka and K. Hirano, J. Mater. Sci. 27 (1992) 5735.CrossRefGoogle Scholar
  19. 19.
    H. Okada, G. Itoh and M. Kanno, Scripta Metall. Mater. 26 (1992) 69.CrossRefGoogle Scholar
  20. 20.
    M. Tamura, T. Mori and T. Nakamura, J. Jpn Inst. Metals 34 (1970) 919.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Y. Iijima
    • 1
  • S. Yoshida
    • 1
  • H. Saitoh
    • 1
  1. 1.Department of Materials Science, Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations