Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1251–1258 | Cite as

Mode II fracture tests on fibre-reinforced plastics

  • E. K. Tschegg
  • K. Humer
  • H. W. Weber
Papers

Abstract

A new testing technique designed to measure the intralaminar shear properties (mode II) of fibre-reinforced plastics on notched rectangular specimens is presented. The tests and evaluation procedures are based on the fracture energy concept. The shear test method is experimentally simple; the loading device as well as the sample geometry are small, and hence, well suited for low-temperature experiments on both unirradiated and irradiated samples. Experiments carried out at room temperature and at 77 K, on a two-dimensionally glass fibre-reinforced epoxy (lsoval 10), are presented. Results of acoustic emission and fractographic examinations as well as investigations concerning the influence of the sample geometry on the measured fracture mechanical quantities are discussed. Advantages and disadvantages of the new testing technique are assessed and compared to other shear tests.

Keywords

Acoustic Emission Shear Test Testing Technique Sample Geometry Shear Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Adams and D. E. Walrath, in ASTM STP 787, edited by I. M. Daniel (American Society for Testing and Materials, Philadelphia, PA, 1982) p. 19.Google Scholar
  2. 2.
    J. A. Barnes, M. Kumosa and D. Hull, Compos. Sci. Technol. 28 (1987) 251.CrossRefGoogle Scholar
  3. 3.
    D. W. Wilson, Adv. Cryog. Eng 36 (1990) 793.Google Scholar
  4. 4.
    M. B. Kasen, ibid. 36 (1990) 787.Google Scholar
  5. 5.
    D. Evans, I. Johnson and D. D. Hughes, ibid. 36 (1990) 819.Google Scholar
  6. 6.
    H. Becker, ibid. 36 (1990) 827.Google Scholar
  7. 7.
    M. B. Kasen, J. Mater. Sci. 23 (1988) 830.CrossRefGoogle Scholar
  8. 8.
    G. S. Giare, A. Herold, V. Edwards and R. R. Newcomb, Eng. Fract. Mech. 30 (1988) 531.CrossRefGoogle Scholar
  9. 9.
    A. C. Garg, ibid. 23 (1986) 719.CrossRefGoogle Scholar
  10. 10.
    S. Nishijima, T. Okada, T. Hirokawa, J. Yasuda and Y. Iwasaki, Cryogenics 31 (1991) 273.CrossRefGoogle Scholar
  11. 11.
    L. W. Tsai and S. Y. Zhang, Compos. Sci. Technol. 31 (1988) 97.CrossRefGoogle Scholar
  12. 12.
    S. Egusa, J. Mater. Sci. 25 (1990) 1863.CrossRefGoogle Scholar
  13. 13.
    S. Hashemi, A. J. Kinloch and J. G. Williams, Proc. R. Soc. Lond. A 427 (1990) 173.CrossRefGoogle Scholar
  14. 14.
    P. Ifju and D. Post, in “Proceedings of the 1989 SEM Spring Conference on Experimental Mechanics” (Society of Experimental Mechanics, Cambridge, MA, 1989) p. 337.Google Scholar
  15. 15.
    K. Hollmann, Eng. Fract. Mech. 39 (1991) 159.CrossRefGoogle Scholar
  16. 16.
    R. Poehlchen, E. Salpietro, J. Rauch, G. Claudet, J. Marangos and M. Soell, Adv. Cryog. Eng. 36 (1990) 893.Google Scholar
  17. 17.
    P. Bruzzone, K. Nylund and W. J. Muster, ibid. 36 (1990) 999.Google Scholar
  18. 18.
    J. Davies, C. W. A. Yim and T. G. Morgan, Int. J. Cem. Compos. Lightweight Concr. 9 (1987) 33.CrossRefGoogle Scholar
  19. 19.
    J. Davies, ibid. 10 (1988) 3.CrossRefGoogle Scholar
  20. 20.
    A. Hillerborg, in “Proceedings of Fracture Mechanics of Concrete, Developments in Civil Engineering”, Vol. 7, edited by F. Wittmann (Elsevier, Amsterdam, 1983) p. 223.Google Scholar
  21. 21.
    Idem Mater. Construct. 18 (1985) 25.Google Scholar
  22. 22.
    E. K. Tschegg, K. Humer and H. W. Weber, J. Mater. Sci. 28 (1993) 2471.CrossRefGoogle Scholar
  23. 23.
    C. G. Aronsson and J. Bäcklund, J. Compos. Mater. 20 (1986) 287.CrossRefGoogle Scholar
  24. 24.
    Idemin ASTM STP 907 (American society for Testing and Materials, Philadelphia, PA, 1986) p. 134.Google Scholar
  25. 25.
    P. E. Roelfstra, Thesis, Ecole Polytechnique Federale de Lausanne (1989).Google Scholar
  26. 26.
    J. Watkins, Int. J. Fract. 23 (1983) 135.CrossRefGoogle Scholar
  27. 27.
    E. K. Tschegg, K. Humer and H. W. Weber, Cryogenics 31 (1991) 312.CrossRefGoogle Scholar
  28. 28.
    K. Humer, H. W. Weber, E. K. Tschegg, K. Noma, J. Yasuda and Y. Iwasaki, ibid. 33 (1993) 162.CrossRefGoogle Scholar
  29. 29.
    E. K. Tschegg, K. Humer and H. W. Weber, Adv. Cryog. Eng. 38 (1992) 355.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • E. K. Tschegg
    • 1
  • K. Humer
    • 2
  • H. W. Weber
    • 2
  1. 1.Institut für Angewandte und Technische PhysikTU WienWienAustria
  2. 2.Atominstitut der Österreichischen UniversitätenWienAustria

Personalised recommendations