Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1217–1224 | Cite as

Electrode configurations and impedance spectra of cement pastes

  • S. J. Ford
  • T. O. Mason
  • B. J. Christensen
  • R. T. Coverdale
  • H. M. Jennings
  • E. J. Garboczi
Papers

Abstract

Electrode effects on impedance spectra of cement pastes were investigated by two-, three-, and four-point measurements without a potentiostat over the frequency range 0.01 Hz–10 MHz. Electrode immittance effects arising from highly resistive/capacitive contacts cannot be fully corrected by nulling procedures. Two-point measurements are much more susceptible to such effects than three- or four-point measurements. The three- and four-point results on pastes suggest that there is negligible high-frequency “offset” resistance, and that bulk paste arcs are not significantly depressed below the real axis in Nyquist plots. The important impedance-derived equivalent circuit parameters are bulk resistance and capacitance; offset resistance and arc depression angle may not be physically meaningful parameters. Whereas all electrode configurations give reliable values of bulk paste resistance, only the three-point configuration provides the total paste/electrode dual arc spectrum involving a single electrode. Multielectrode (three- or four-point) measurements may be necessary to establish the true bulk paste dielectric constant.

Keywords

Dielectric Constant Impedance Spectrum Nyquist Plot Cement Paste Electrode Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Christensen, R. T. Coverdale, R. A. Olson, S. J. Ford, E. J. Garboczi, H. M. Jennings. and T. O. Mason, J. Am. Ceram. Soc. 11 (1994).Google Scholar
  2. 2.
    W. J. McCarter, Cem. Concr. Res. 17 (1987) 517.CrossRefGoogle Scholar
  3. 3.
    W. J. McCarter, S. Garvin and N. Bouzid, J. Mater. Sci. Lett. 7 (1988) 1056.CrossRefGoogle Scholar
  4. 4.
    W. J. McCarter and S. Garvin, J. Phys. D Appl. Phys. 22 (1989) 1773.CrossRefGoogle Scholar
  5. 5.
    B. J. Christensen and T. O. Mason, J. Am. Ceram. Soc. 4 (1992) 939.CrossRefGoogle Scholar
  6. 6.
    A. Berg, G. A. Niklasson, K. Bratervik, B. Hedberg and L. O. Nilsson, J. Appl. Phys. 71 (1992) 5897.CrossRefGoogle Scholar
  7. 7.
    Z. Xu, P. Gu, P. Xie and J. J. Beaudoin, Cem. Concr. Res. 23 (1993) 1007.CrossRefGoogle Scholar
  8. 8.
    W. J. McCarter and R. Brousseau, ibid. 20 (1990) 891.CrossRefGoogle Scholar
  9. 9.
    C. A. Scuderi, T. O. Mason, and H. M. Jennings, J. Mater. Sci. 26 (1991) 349.CrossRefGoogle Scholar
  10. 10.
    B. J. Christensen, T. O. Mason and H. M. Jennings, Mater. Res. Soc. Symp. Proc. 245 (1992) 271.CrossRefGoogle Scholar
  11. 11.
    P. Gu, P. Xie, J. J. Beaudoin and R. Brousseau, Cem. Concr. Res. 22 (1992) 833.CrossRefGoogle Scholar
  12. 12.
    Idem, ibid. 23 (1993) 157.CrossRefGoogle Scholar
  13. 13.
    Z. Xu, P. Gu, P. Xie and J. J. Beaudoin, ibid. 23 (1993) 853.CrossRefGoogle Scholar
  14. 14.
    P. Xie, P. Gu, Y. Fu and J. J. Beaudoin, ibid. 24 (1994) 92.CrossRefGoogle Scholar
  15. 15.
    P. Gu, Z. Xu, P. Xie and J. J. Beaudoin, ibid. 23 (1993) 531.CrossRefGoogle Scholar
  16. 16.
    P. Xie, P. Gu, Z. Xu and J. J. Beaudoin, ibid. 23 (1993) 359.CrossRefGoogle Scholar
  17. 17.
    P. Gu, P. Xie, Y. Fu and J. J. Beaudoin, ibid. 24 (1994) 86.CrossRefGoogle Scholar
  18. 18.
    R. T. Coverdale, E. J. Garboczi, H. M. Jennings, B. J. Christensen and T. O. Mason, J. Am. Ceram. Soc. 76 (1993) 1153.CrossRefGoogle Scholar
  19. 19.
    R. T. Coverdale, B. J. Christensen, H. M. Jennings, T. O. Mason, D. P. Bentz and E. J. Garboczi, J. Am. Ceram. Soc., submitted.Google Scholar
  20. 20.
    R. T. Coverdale, B. J. Christensen, T. O. Mason, H. M. Jennings and E. J. Garboczi, J. Mater. Sci. 29 (1994) 4984.CrossRefGoogle Scholar
  21. 21.
    B. A. Boukamp, “Equivalent Circuit (EQUIVCRT.PAS)”, University of Twente, Department of Chemical Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands (1988).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. J. Ford
    • 1
  • T. O. Mason
    • 1
  • B. J. Christensen
    • 1
  • R. T. Coverdale
    • 1
  • H. M. Jennings
    • 1
  • E. J. Garboczi
    • 2
  1. 1.Department of Materials Science and Engineering and Center for Advanced Cement-Based MaterialsNorthwestern UniversityEvanstonUSA
  2. 2.Building Materials DivisionNational Institute of Standards and Technology and Center for Advanced Cement-Based MaterialsGaithersburgUSA

Personalised recommendations