Journal of Materials Science

, Volume 30, Issue 5, pp 1180–1186 | Cite as

Nitridation characteristics of floating aluminium powder

  • An-Jae Chang
  • Shi-Woo Rhee
  • Sunggi Baik


Experimental parameters for floating nitridation process were examined to study the effect on moving behaviour and direct nitridation characteristics of aluminium powder, which was carried over from a fluidized bed. The conversion increased with increasing reactor temperature and mole ratio of ammonia to aluminium. It was also strongly dependent on the thermal decomposition of ammonia participated in the reaction. Aluminium powder was converted to aluminium nitride as high as 0.90 when the reactor temperature was 1300 °C and the mole ratio was 19.5 The particle size and specific surface area of the powder increased with increasing conversion, which was due to the volumetric and structural change of aluminium particles when nitrided to form fine crystallites with higher porosity.


Polymer Aluminium Particle Size Ammonia Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Matsuo, N. Hotta and Y. Nishwaki, Yogyo-Kyokai-Shi 83 (1975) 490.CrossRefGoogle Scholar
  2. 2.
    N. Hotta, I. Kimura, K. Ichiya, N. Saito, S. Yasukawa, K. Toda and Kitamura, Seramikkusu Ronbunshi 96 (1988) 731.CrossRefGoogle Scholar
  3. 3.
    I. Kimura, K. Ichiya, M. Ishii and N. Hotta, J. Mater. Sci. Lett. 8 (1989) 303.CrossRefGoogle Scholar
  4. 4.
    A. W. Weimer, G. A. Cochran, G. A. Eisman and J. P. Henley, Aero. Sci. Technol. 19 (1993) 491.CrossRefGoogle Scholar
  5. 5.
    M. W. Chase, Jr, C. A. Davies, J. R. Downey, Jr, D. J. Frurip, R. A. Mcdonald and A. N. Syverud, in “JANAF Thermochemical Tables”, 3rd Ed (American Institute of Physics, New York, 1986).Google Scholar
  6. 6.
    S. Ito, I. Ebato, H. Fukui, N. Koura and N. Yoneda, J. Ceram. Soc. Jpn. 100 (1992) 629.CrossRefGoogle Scholar
  7. 7.
    S. Choi and S. Lee, J. Kor. Ceram. Soc. 22 (1985) 80.Google Scholar
  8. 8.
    J. Subrahmanyam and M. Vijayakumar, J. Mater. Sci. 27 (1992) 6249.CrossRefGoogle Scholar
  9. 9.
    D. Kunii and O. Levenspiel, “Fluidization Engineering” (Wiley, New York, 1969) p 64.Google Scholar
  10. 10.
    J. F. Davidson, R. Clift and D. Harrison, “Fluidization” (Academic Press, London, 1985) p. 39.Google Scholar
  11. 11.
    S. Morooka, K. Kusakabe, A. Kobata and Y. Kato, J. Chem. Eng. Jp. 21 (1988) 41.CrossRefGoogle Scholar
  12. 12.
    F. A. Zenz and D. F. Othmer, “Fluidization and Fluid-Particle Systems” (Chapman & Hall, London, 1960) p. 374.Google Scholar
  13. 13.
    D. R. Gaskell, “Introduction to Metallurgical Thermodynamics”, 2nd Edn (McGraw-Hill, New York, 1981) p. 248.Google Scholar
  14. 14.
    K. G. Nickel, E. Riedel and G. Petzow, J. Amer. Ceram. Soc. 72 (1989) 1804.CrossRefGoogle Scholar
  15. 15.
    J. Park, S. Rhee and K. Lee, J. Mater. Sci. 28 (1993) 57.CrossRefGoogle Scholar
  16. 16.
    A. Chang, S. Baik and S. Rhee, J. Amer. Ceram. Soc. in press.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • An-Jae Chang
    • 1
  • Shi-Woo Rhee
    • 1
    • 2
  • Sunggi Baik
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Laboratory for Advanced Materials Processing, Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations