Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1158–1165 | Cite as

Some properties of mullite powders prepared by chemical vapour deposition

Part I Preparation of mullite powder
  • K. Itatani
  • T. Kubozono
  • F. S. Howell
  • A. Kishioka
  • M. Kinoshita
Papers

Abstract

The chemical vapour deposition (CVD) technique based upon reaction among aluminium chloride (AlCl3), silicon chloride (SiCl4) and oxygen was applied to produce submicrometresized mullite (3Al2O3 ·2SiO2) powder. The conditions for preparing the best crystalline mullite were as follows: (i) the reaction temperature, 1200 °C; (ii) the flow rate of carrier gas (Ar) of AlCl3, 0.3 dm3 min−1, and that of SiCl4, 0.3 dm3 min−1; (iii) the sublimation temperature of AlCl3, 180 °C, and the evaporation temperature of SiCl4, 25 °C; and (iv) the flow rate of oxygen, 0.9 dm3 min−1. The as-prepared powder contained mullite, a small amount of γ-Al2O3 (Al-Si spinel) and amorphous material; this powder was composed of spherical primary particles of ∼ 0.05 μm diameter. Although only mullite was present at the calcination temperature of 1300 °C, a small amount of α-Al2O3 was formed at 1400–1700 °C. Agglomeration due to primary particle growth started at temperatures exceeding 1400 °C.

Keywords

Calcination Agglomeration Chemical Vapour Deposition Calcination Temperature Primary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aksay and J. A. Pask, J. Amer. Ceram. Soc. 58 (1975) 507.CrossRefGoogle Scholar
  2. 2.
    H. Schneider and E. Eberhard, ibid. 73 (1990) 2073CrossRefGoogle Scholar
  3. 3.
    S. Kanzaki, T. Kumazawa, J. Asaumi, O. Abe and H. Tabata, J. Ceram. Soc. Jpn 93 (1985) 407.Google Scholar
  4. 4.
    H. Suzuki, H. Saito, Y. Tomokiyo, Y. Suyama, in “Ceramic Transactions, Vol. 6 Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (The American Ceramic Society, Westerville, OH, 1990) p. 263.Google Scholar
  5. 5.
    O. Sakurai, N. Mizutani and M. Kato, J. Ceram. Soc. Jpn 96 (1988) 639.CrossRefGoogle Scholar
  6. 6.
    K. Hamano, T. Sato and Z. Nakagawa, J. Ceram. Soc. Jpn 94 (1986) 818.Google Scholar
  7. 7.
    M. S. J. Gani and R. McPherson, J. Mater. Sci. 12 (1977) 999.CrossRefGoogle Scholar
  8. 8.
    S. Hori and R. Kurita, in “Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites”, edited by S. Somiya, R. F. Davis and J. A. Pask (The American Ceramic Society, Westerville, OH, 1990) p. 311.Google Scholar
  9. 9.
    S-L. Chung, Y-C. Shu and M-S. Tsai, in “Ceramic Transactions, Vol. 12, Ceramic Powder Science III”, edited by G. L. Messing, S. Hirano and H. Hauser (The American Ceramic Society, Westerville, OH, 1990) p. 275.Google Scholar
  10. 10.
    Powder diffraction file Card No. 8-453 (JCPDS-International Center for Diffraction Data, Swarthmore, PA).Google Scholar
  11. 11.
    Powder diffraction file Card No. 15-776 (JCPDS-International Center for Diffraction Data, Swarthmore, PA).Google Scholar
  12. 12.
    Powder diffraction file Card Nos 10-425 and 29-63 (JCPDS-International Center for Diffraction Data, Swarthmore, PA).Google Scholar
  13. 13.
    I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Amer. Ceram. Soc. 74 (1991) 2343.CrossRefGoogle Scholar
  14. 14.
    I. M. Low and R. McPherson, J. Mater. Sci. 24 (1989) 926.CrossRefGoogle Scholar
  15. 15.
    K. Okada and N. Otsuka, J. Amer. Ceram. Soc. 69 (1986) 652.CrossRefGoogle Scholar
  16. 16.
    A. K. Chakraborty, J. Mater. Sci. 27 (1992) 2075.CrossRefGoogle Scholar
  17. 17.
    Y. Hirata, I. A. Aksay, R. Kurita, S. Hori and H. Kaji, in “Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix”, edited by S. Somiya, R. F. Davis and J. A. Pask (The American Ceramic Society, Westerville, OH, 1990) p. 323.Google Scholar
  18. 18.
    Powder diffraction file Card No. 10-173 (JCPDS-International Center for Diffraction Data, Swarthmore, PA).Google Scholar
  19. 19.
    K. J. D. MacKenzie, J. Amer. Ceram. Soc. 55 (1972) 68.CrossRefGoogle Scholar
  20. 20.
    P. Colomban, J. Mater. Sci. 24 (1989) 3002.CrossRefGoogle Scholar
  21. 21.
    J. S. Lee and S. C. Yu, ibid. 27 (1992) 5203.CrossRefGoogle Scholar
  22. 22.
    H. Schneider and T. R. Lipinski, J. Amer. Ceram. Soc. 71 (1988) C-162.Google Scholar
  23. 23.
    W. E. Cameron, Amer. Ceram. Soc. Bull. 56 (1977) 1003.Google Scholar
  24. 24.
    P. D. D. Rodrigo and P. Boch, Sci. Ceram. 13 (1985) C1–405.Google Scholar
  25. 25.
    K. Itatani, K. Koizumi, F. S. Howell, A. Kishioka and M. Kinoshita, J. Mater. Sci. 24 (1989) 2603.CrossRefGoogle Scholar
  26. 26.
    M. D. Sacks and J. A. Pask, J. Amer. Ceram. Soc. 65 (1982) 70.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • K. Itatani
    • 1
  • T. Kubozono
    • 1
  • F. S. Howell
    • 1
  • A. Kishioka
    • 1
  • M. Kinoshita
    • 1
  1. 1.Department of Chemistry, Faculty of Science and EngineeringSophia UniversityTokyoJapan

Personalised recommendations