Journal of Materials Science

, Volume 30, Issue 5, pp 1144–1150 | Cite as

Three-dimensional cellular automaton models of microstructural evolution during solidification

  • S. G. R. Brown
  • N. B. Bruce


The evolution of microstructural features during solidification involves complex interactions between several physical phenomena. Cellular automata (CA) models are often characterized as being simple in their construction and yet able to produce very complicated behaviour. This property of CA models has been exploited to produce computer simulations of various aspects of microstructural evolution occurring during solidification. Results of a series of three-dimensional simulations of non-isothermal “free” dendritic growth are presented and the changes in dendrite morphology for different conditions are quantified and discussed. A modification of this model was also developed to examine the effects of composition on microstructural evolution for a simple eutectic system. As the composition moves towards the eutectic the simulated microstructures change from combined dendritic/lamellar to completely lamellar.


Polymer Microstructure Computer Simulation Complex Interaction Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Chalmers, “Principles of Solidification” (Wiley, New York, 1964) Ch. 4.Google Scholar
  2. 2.
    G. P. Ivantsov, Dokl. Acad. Nauk. 58 (1947) 567.Google Scholar
  3. 3.
    D. E. Temkin, ibid. 132 (1960) 1307.Google Scholar
  4. 4.
    G. Horvay and J. W. Cahn, Acta Metall. 9 (1961) 695.CrossRefGoogle Scholar
  5. 5.
    G. F. Bolling and W. A. Tiller, J. Appl. Phys. 32 (1961) 2587.CrossRefGoogle Scholar
  6. 6.
    M. E. Glicksman and R. J. Schaeffer, J. Crystal Growth 1 (1967) 297.CrossRefGoogle Scholar
  7. 7.
    L. A. Tarshis and G. R. Kotler, ibid. 2 (1968) 222.CrossRefGoogle Scholar
  8. 8.
    R. F. Sekerka, R. G. Seidensticker, D. R. Hamilton and J. D. Harrison, in “Investigation of Desalination by Freezing” (Westinghouse Research Laboratory Report, 1967).Google Scholar
  9. 9.
    E. G. Holtzmann, J. Appl. Phys. 41 (1970) 1460.CrossRefGoogle Scholar
  10. 10.
    R. Trivedi, Acta Metall. 18 (1970) 287.CrossRefGoogle Scholar
  11. 11.
    G. E. Nash and M. E. Glicksman, ibid. 22 (1974) 1283.CrossRefGoogle Scholar
  12. 12.
    M. H. Burden and J. D. Hunt, J. Crystal Growth 22 (1974) 109.CrossRefGoogle Scholar
  13. 13.
    I. Jin and G. R. Purdy, ibid. 23 (1974) 29.CrossRefGoogle Scholar
  14. 14.
    J. S. Kircaldy, Scripta Metall. 14 (1980) 739.CrossRefGoogle Scholar
  15. 15.
    R. Trivedi, J. Crystal Growth 49 (1980) 219.CrossRefGoogle Scholar
  16. 16.
    W. Kurz and J. D. Fisher, Acta Metall. 29 (1981) 11.CrossRefGoogle Scholar
  17. 17.
    V. Laxmanan, ibid. 33 (1985) 1023.CrossRefGoogle Scholar
  18. 18.
    W. Oldfield, in “The Solidification of Metals” (The Iron and Steel Institute, London, 1968) p. 70.Google Scholar
  19. 19.
    W. Oldfield, Mater. Sci. Eng. 11 (1973) 211.CrossRefGoogle Scholar
  20. 20.
    J. D. Hunt, Acta Metall. Mater. 39 (1991) 2117.CrossRefGoogle Scholar
  21. 21.
    R. Kobayashi, Phys. D 63 (1993) 410.CrossRefGoogle Scholar
  22. 22.
    A. A. Wheeler, B. T. Murray and R. J. Schaeffer, ibid. 66 (1993) 243.CrossRefGoogle Scholar
  23. 23.
    S. L. Wang, R. G. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G. B. McFadden, ibid. 69 (1993) 189.CrossRefGoogle Scholar
  24. 24.
    W. J. Boettinger, A. A. Wheeler, B. T. Murray, G. B. McFadden and R. Kobayashi, in “Modeling of Casting, Welding and Advanced Solidification Processes—VI”, edited by T. S. Piwonka, V. Voller and L. Katgerman (TMS, Florida, 1993) p. 79.Google Scholar
  25. 25.
    M. Hillert, Jernkontorets Ann. 141 (1957) 757.Google Scholar
  26. 26.
    K. A. Tiller, “Liquid Metals and Solidification” (ASM, Cleveland, OH, 1958).Google Scholar
  27. 27.
    K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. AIME 236 (1966) 1129.Google Scholar
  28. 28.
    J. P. Chilton and W. C. Winegard, J. Inst. Metals 89 (1961) 162.Google Scholar
  29. 29.
    J. D. Hunt and J. P. Chilton, ibid. 92 (1963) 21.Google Scholar
  30. 30.
    A. Moore and R. Elliot, in “The Solidification of Metals” (Iron and Steel Institute, London, 1968) p. 167.Google Scholar
  31. 31.
    J. Liu and R. Elliot, Mater. Sci. Eng. A173 (1993) 129.CrossRefGoogle Scholar
  32. 32.
    A. Karma, Phys. Rev. Lett. 59 (1987) 71.CrossRefGoogle Scholar
  33. 33.
    R. Xiao, J. Iwan, D. Alexander and F. Rosenberger, Phys. Rev. A 45 (1992) 571.CrossRefGoogle Scholar
  34. 34.
    S. G. R. Brown and J. A. Spittle, Scripta Metall. Mater. 27 (1992) 1599.CrossRefGoogle Scholar
  35. 35.
    S. G. R. Brown, T. Williams and J. A. Spittle, Acta Metall. Mater. 42 (1994) 2893.CrossRefGoogle Scholar
  36. 36.
    S. G. R. Brown, G. P. Clarke and A. J. Brooks, Mater. Sci. Technol. (1994) in press.Google Scholar
  37. 37.
    J. A. Spittle and S. G. R. Brown, Acta Metall. Mater. (1994) to be published.Google Scholar
  38. 38.
    M. E. Glicksman, R. J. Schaeffer and J. D. Ayers, Metall. Trans. A 7A (1976) 1747.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. G. R. Brown
    • 1
  • N. B. Bruce
    • 1
  1. 1.Materials EngineeringUniversity College SwanseaSingleton Park, SwanseaUK

Personalised recommendations