Advertisement

Journal of Materials Science

, Volume 30, Issue 5, pp 1125–1138 | Cite as

Sensors and techniques used to monitor processing parameters during spray atomization and deposition

  • D. E. Lawrynowicz
  • E. J. Lavernia
Review

Abstract

The emerging field of atomization and spray deposition is continually striving to improve the quality of its final products. A major obstacle to achieving consistently high-quality end products is the lack of ability to monitor the various operational parameters associated with spray processes. This paper will present a discussion of the diagnostic techniques that are currently available for monitoring processing parameters, such as droplet size, velocity, and concentration, as well as droplet temperatures and size distributions. To that effect, several methods for obtaining on-line feedback of these parameters are discussed and compared. Techniques such as high-speed cinematography, off-axis holographic cinematography and infrared thermal imaging, are compared and evaluated for their utility in providing information which will elucidate relevant atomization phenomena. In addition, the PCSV-P probe, phase Doppler particle analysis, EPMP monitor, and intelligent sensors are also reviewed and discerned for their usefulness, in making spray atomization and deposition a more controlled process.

Keywords

Operational Parameter Diagnostic Technique Droplet Size Major Obstacle Thermal Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

P0

Gas jet stagnation pressure

Pe

Gas jet exit pressure

Pdt

Liquid delivery tube pressure

Pr

Reservoir pressure

Ddt

Outer diameter of liquid delivery tube = 9.91 mm

D1

Inner diameter of liquid delivery tube = 3.00 mm

Da

Inter-jet diameter = 10.69 mm

dj

Individual jet diameter = 0.79 mm

f

Next state function

g

Output function

Uk

Control input at time k

Xk

State of the system at time k

Xx+1

State of the system at time k+1

Yk

Measurable output of the system at time k

Zdt

Liquid delivery tube extent out of the jet exit plane = 2.54 mm

αj

Individual jet angle = 22.5° with respect to the axis of symmetry of delivery tube

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Liang, J. C. Earthman and E. J. Lavernia, Acta Metall. Mater. 40 (1992) 2923.CrossRefGoogle Scholar
  2. 2.
    Y. Wu and E. J. Lavernia, Metall. Trans. 23A (1992) 2937.Google Scholar
  3. 3.
    X. Zeng, H. Liu, M. Chu and E. J. Lavernia, ibid. 23A (1993) 3394.Google Scholar
  4. 4.
    R. Perez, J. Zhang, M. Gungor and E. J. Lavernia, ibid. 24A (1993) 701.CrossRefGoogle Scholar
  5. 5.
    G. Jiang, G. Henein and M. W. Siegel, J. Powder Metall. 26 (1990) 253.Google Scholar
  6. 6.
    M. W. Siegel, and H. Henein, in “Synthesis and Analysis in Materials Processing: Characterization and Diagnostics of Ceramic and Metal Particulate Processing”, edited by E. J. Lavernia, H. Henein and I. Anderson (TMS, Warrendale, PA, 1989) p. 1.Google Scholar
  7. 7.
    H. Henein and P. L. Meyer, J. Powder Metall. 28 (1992) 149.Google Scholar
  8. 8.
    W. Lauterborn and A. Judt, Optics Lett. 18 (1993) 4.CrossRefGoogle Scholar
  9. 9.
    R. W. Whatmore, Ferroelectrics 118 (1991) 241.CrossRefGoogle Scholar
  10. 10.
    S. D. Ridder, F. S. Biancaniello, P. I. Espina and S. A. Miller, in “Synthesis and Analysis in Materials Processing: Characterization and Diagnostics of Ceramic and Metal Particulate Processing”, edited by E. J. Lavernia, H. Henein and I. Anderson (TMS, Warrendale, PA, 1989) p. 73.Google Scholar
  11. 11.
    S. D. Ridder, S. A. Osella, P. I. Espina and F. S. Biancaniello, J. Powder Metall. 28 (1992) 133.Google Scholar
  12. 12.
    B. Cantor and B. P. Bewlay, Metall. Trans. 21B (1990) 899.Google Scholar
  13. 13.
    B. Cantor and P. S. Grant, Scripta Metall. 23 (1989) 1651.CrossRefGoogle Scholar
  14. 14.
    F. Gataska, General Electric Corp. Lynn, MA, private communication (1990).Google Scholar
  15. 15.
    V. G. Mcdonell, E. J. Lavernia and G. S. Samuelsen, in “Synthesis and Analysis in Materials Processing: Characterization and Diagnostics of Ceramic and Metal Particulate Processing”, edited by E. J. Lavernia, H. Henein and I. Anderson (TMS, Warrendale, PA, 1989) p.13.Google Scholar
  16. 16.
    M. Kumar, T. V. Balasubramanian and R. D. K. Misra, Sci. Lett. 9 (1990) 147.CrossRefGoogle Scholar
  17. 17.
    L. Salgado, and F. A. Filho, Mater. Sci. Eng. A Struct. Mater. Prop. Microstuct. Process. 133 (1991) 692.CrossRefGoogle Scholar
  18. 18.
    F. S. Biancaniello, J. J. Conway, P. I. Espina, G. E. Mattingly and S. D. Ridder, Mater. Sci. Eng. A124 (1990) 9.CrossRefGoogle Scholar
  19. 19.
    S. A. Osella, S. D. Ridder, F. S. Biancaniello and P. I. Espina, J. Mater. 43 (1991) 18.Google Scholar
  20. 20.
    F. S. Biancaniello, P. I. Espina, G. E. Mattingly and S. D. Ridder, Mater. Sci. Eng. A119 (1989) 161.CrossRefGoogle Scholar
  21. 21.
    F. S. Biancaniello, C. Presser and S. D. Ridder, ibid. A124 (1990) 21.CrossRefGoogle Scholar
  22. 22.
    P. Mathur, S. Annavarapu, D. Apelian and A. Lawley, J. Mater. 41 (1989) 23.Google Scholar
  23. 23.
    Idem Mater. Sci. Eng. A142 (1991) 261.CrossRefGoogle Scholar
  24. 24.
    S. Annavarapu, D. Apelian and A. Lawley, Metall. Trans. 21A (1990) 3237.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. E. Lawrynowicz
    • 1
  • E. J. Lavernia
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations