Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5307–5312 | Cite as

Electrodeposition of ceramic films from non-aqueous and mixed solutions

  • I. Zhitomirsky
  • L. Gal-Or
  • A. Kohn
  • H. W. Hennicke
Article

Abstract

The preparation of films of TiO2, ZrO2 and PbZrO3 by electrodeposition from N,N-dimethylformamide solution, has been performed. A new method of cathodic electrodeposition of ceramic films via peroxoprecursors has been proposed and demonstrated on the deposition of TiO2. The effect of thermal treatment on the phase content of the obtained films and the influence of the solvent used on the deposition process and film morphology were studied.

Keywords

Polymer TiO2 Thermal Treatment Material Processing Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Phillips, M. J. Shane and J. A. Switzer, J. Mater. Res. 4 (1989) 923.CrossRefGoogle Scholar
  2. 2.
    H. Konno, M. Tokita and R. Furuichi, J. Electrochem. Soc. 137 (1990) 361.CrossRefGoogle Scholar
  3. 3.
    J. A. Switzer, ibid. 133 (1986) 722.CrossRefGoogle Scholar
  4. 4.
    J. A. Switzer, Am. Ceram. Soc. Bull. 66 (1987) 1521.Google Scholar
  5. 5.
    L. Gal-Or, I. Silberman and R. Chaim, J. Electrochem. Soc. 138 (1991) 1939.CrossRefGoogle Scholar
  6. 6.
    R. Chaim, I. Silberman and L. Gal-Or, ibid. 138 (1991) 1942.CrossRefGoogle Scholar
  7. 7.
    P. Slezak and A. Wieckowski, ibid. 138 (1991) 1038.CrossRefGoogle Scholar
  8. 8.
    M. Shirkhanzaden, J. Mater. Sci. Lett. 12 (1993) 16.Google Scholar
  9. 9.
    Y. Matsumoto, H. Adachi and J. Hombo, J. Am. Ceram. Soc. 76 (1993) 769.CrossRefGoogle Scholar
  10. 10.
    J. A. Switzer, Mater. Res. Soc. Symp. Proc. 180 (1990) 1053.CrossRefGoogle Scholar
  11. 11.
    J. A. Switzer, M. J. Shane and R. J. Phillips, Science 247 (1990) 444.CrossRefGoogle Scholar
  12. 12.
    J. A. Switzer, Nanostruct. Mater. 1 (1992) 43.CrossRefGoogle Scholar
  13. 13.
    J. A. Switzer, R. P. Raffaelle, R. J. Phillips, C.-J. Hung and T. D. Golden, Science 258 (1992) 1918.CrossRefGoogle Scholar
  14. 14.
    S. B. Abolmaali and J. B. Talbot, J. Electrochem. Soc. 140 (1993) 443.CrossRefGoogle Scholar
  15. 15.
    R. Chaim, G. Stark, L. Gal-Or and H. Bestgen, J. Mater. Sci. 29 (1994) 6241.CrossRefGoogle Scholar
  16. 16.
    J. Mühlebach, K. Müller and G. Schwarzenbach, Inorg. Chem. 9 (1970) 2381.CrossRefGoogle Scholar
  17. 17.
    J. A. Navio, F. J. Marchena, M. Macias, P. J. Sanchez-Soto and P. Pichat, J. Mater. Sci. 27 (1992) 2463.CrossRefGoogle Scholar
  18. 18.
    R. J. H. Clark, D. C. Dradley and P. Thornton, “The chemistry of titanium, zirconium and hafnium” (Pergamon Press, Oxford, New York, Toronto, 1975) p. 453.Google Scholar
  19. 19.
    M. Murata, K. Wakino, K. Tanaka and Y. Hamakawa, Mater. Res. Bull. 11 (1976) 323.CrossRefGoogle Scholar
  20. 20.
    G. Pfaff, J. Mater. Sci. Lett. 12 (1993) 32.Google Scholar
  21. 21.
    Idem, ibid. 10 (1991) 129.CrossRefGoogle Scholar
  22. 22.
    M. J. Kim and E. Matijevic, J. Mater. Res. 7 (1992) 912.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • I. Zhitomirsky
    • 1
  • L. Gal-Or
    • 1
  • A. Kohn
    • 1
  • H. W. Hennicke
    • 2
  1. 1.Israel Institute of Metals, Technion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Clausthal UniversityClausthal-ZellerfeldGermany

Personalised recommendations