Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5295–5303 | Cite as

High-temperature flow behaviour and concurrent microstructural evolution in an Al-24 wt% Cu alloy

  • P. K. Bakshi
  • B. P. Kashyap
Article

Abstract

Tensile specimens of an Al-24 wt% Cu alloy of grain sizes in the range 7.6–20.6 μm were deformed at 400–540 °C using constant initial strain rates ranging from 5×10−6 to 2×10−2 s−1. Initially the stress-strain (σ-ɛ) curves show work hardening which is followed by strain softening at higher strain rates and lower temperatures. At lower strain rates and higher temperatures, on the other hand, σ continues to increase with strain or tends to be independent of strain. Grain growth and cavitation occur to varying extents depending on strain rate and test temperature. While the grain growth can account for the work hardening at higher temperatures as well as at lower strain rates, it fails to do so at higher strain rates. The strain softening is associated with cavitation. The presence of non-steady-state flow influences the parameters of the constitutive relation to varying extents.

Keywords

Polymer Grain Size Cavitation Work Hardening Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Mukherjee, J. E. Bird and J. E. Dorn, Trans. ASM 62 (1969) 155.Google Scholar
  2. 2.
    K. A. Padmanabhan and G. J. Davies, “Superplasticity” (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
  3. 3.
    J. Ĉadek, “Creep in metallic materials” (Elsevier, Amsterdam, 1988).Google Scholar
  4. 4.
    A. K. Mukherjee, in “Plastic deformation and fracture of materials: materials science and technology — a comprehensive treatment”, vol. 6, edited by H. Mughrabi (VCH Verlagsgeselischaft mbH Weinheim, Germany, and VCH, New York, 1993) p. 406.Google Scholar
  5. 5.
    T. G. Langdon, Metall. Trans. 13A (1982) 689.CrossRefGoogle Scholar
  6. 6.
    J. Pilling and N. Ridley, “Superplasticity in crystalline solids” (Institute of Metals, London, 1989).Google Scholar
  7. 7.
    D. S. Wilkinson and C. H. Cáceres, J. Mater. Sci. Lett. 3 (1984) 395.CrossRefGoogle Scholar
  8. 8.
    B. P. Kashyap and A. K. Mukerjee, Res. Mech. 17 (1986) 355.Google Scholar
  9. 9.
    G. Rai and N. J. Grant, Metall. Trans. 6A (1975) 90.Google Scholar
  10. 10.
    B. P. Kashyap and K. Tangri, Scripta Metall. 20 (1986) 769.CrossRefGoogle Scholar
  11. 11.
    P. K. Bakshi and B. P. Kashyap, Scripta Metall. Mater. 29 (1993) 1073.CrossRefGoogle Scholar
  12. 12.
    P. K. Bakshi and B. P. Kahsyap, J. Mater. Sci. 29 (1994) 2063.CrossRefGoogle Scholar
  13. 13.
    H. J. McQueen and J. J. Jonas, in “Treatise on material science and technology — plastic deformation of materials”, Vol. 6. edited by R. J. Arsenault (Academic Press, New York, 1975) p. 393.CrossRefGoogle Scholar
  14. 14.
    T. G. Langdon and D. M. R. Taplin, S. M. Arch. 2 (1977) 329.Google Scholar
  15. 15.
    B. P. Kashyap and A. K. Mukherjee, Mater. Sci. Technol. 1 (1985) 291.CrossRefGoogle Scholar
  16. 16.
    B. P. Kashyap and G. S. Murty, Mater. Sci. Eng. 50 (1981) 13.CrossRefGoogle Scholar
  17. 17.
    G. S. Sohal, Mater. Sci. Technol. 4 (1988) 811.CrossRefGoogle Scholar
  18. 18.
    S. J. Rothman and N. L. Peterson, Phys. Status Solidi 35 (1969) 305.CrossRefGoogle Scholar
  19. 19.
    R. C. Gifkins, J. Aust. Inst. Met. 17 (1973) 137.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. K. Bakshi
    • 1
  • B. P. Kashyap
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of TechnologyBombayIndia

Personalised recommendations