Journal of Materials Science

, Volume 30, Issue 20, pp 5287–5294 | Cite as

Influence of processing and testing conditions on the mechanical behaviour of sheet-moulding compound laminates

  • J. Garmendia
  • M. Olaizola
  • I. Etxeberria
  • J. C. Franco
  • I. Mondragon


Studies have been carried out in order to optimize the compression-moulding cycle for two classes of commercial sheet-moulding compounds, standard and low-shrink prepregs. The laminates have been moulded at different temperature and pressure conditions, and afterwards their mechanical behaviour has been analysed by flexural and tensile tests at various temperatures and strain rates. Furthermore, dynamic-mechanical measurements have been used to correlate temperature-dependent viscoelastic properties, and the structure of the moulded materials.


Polymer Tensile Test Mechanical Behaviour Pressure Condition Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. T. Kau and E. M. Hagerman, Polym. Compos. 8 (1987) 176.CrossRefGoogle Scholar
  2. 2.
    C. A. Dostal (ed.) “Engineered materials handbook”, vol 1, “composites” (ASM International, Metals Park, OH, (1987).Google Scholar
  3. 3.
    M. R. Kamal and M. E. Ryant, Adv. Polym. Technol. 4 (1982) 314.Google Scholar
  4. 4.
    C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer 32 (1991) 636.CrossRefGoogle Scholar
  5. 5.
    R. C. G. Arridge, “Mechanics of polymers” (Clavendon, Oxford, 1975).Google Scholar
  6. 6.
    L. Suspène, D. Fourquier and Y. S. Yang, Polymer 32 (1991) 1593.CrossRefGoogle Scholar
  7. 7.
    J. C. Lucas, J. Borrajo and R. J. J. Williams, ibid. 34 (1993) 1886.CrossRefGoogle Scholar
  8. 8.
    M. Ruffier, G. Merle and J. P. Pascault, Polym. Eng. Sci. 33 (1993) 466.CrossRefGoogle Scholar
  9. 9.
    F. R. Tollens and L. J. Lee, Polymer 34 (1993) 29.CrossRefGoogle Scholar
  10. 10.
    D. J. Ewen and J. Newbould, Polym. Compos. 12 (1991) 315.CrossRefGoogle Scholar
  11. 11.
    J. M. Castro and R. M. Griffith, Polym. Eng. Sci. 29 (1989) 632.CrossRefGoogle Scholar
  12. 12.
    J-Y. Huang, T. Y. Lu and W. Hwu, ibid. 33 (1993) 1.CrossRefGoogle Scholar
  13. 13.
    C. B. Bucknall and A. H. Gilbert, Polymer 30 (1989) 213.CrossRefGoogle Scholar
  14. 14.
    C. de la Caba, I. Garcia, A. Eceiza and I. Mondragon, ibid, to be published.CrossRefGoogle Scholar
  15. 15.
    L. F. Marker and B. Ford, Mod. Plast. 54 (1977) 64.Google Scholar
  16. 16.
    K. Schulte, K. Friedrich and G. Horstenkamp, J. Mater. Sci. 21 (1986) 3561.CrossRefGoogle Scholar
  17. 17.
    I. Garcia, C. de la Caba, A. Eceiza and I. Mondragon, Polymer, submitted.Google Scholar
  18. 18.
    H. Eyring, J. Chem. Phys. 4 (1936) 283.CrossRefGoogle Scholar
  19. 19.
    G. M. Allen, G. L. Wu and S. A. Prentice, J. Appl. Polym. Sci. 44 (1992) 213.CrossRefGoogle Scholar
  20. 20.
    G. Tieghi, M. Levi and A. Fallini, Polymer 33 (1992) 3748.CrossRefGoogle Scholar
  21. 21.
    V. Bellenger, B. Mortaigne, M. F. Grenierloustalot and J. Verdu, J. Appl. Polym. Sci. 44 (1992) 643.CrossRefGoogle Scholar
  22. 22.
    P. M. Jacobs and F. R. Jones, Polymer 33 (1992) 1418.CrossRefGoogle Scholar
  23. 23.
    D. S. Lee and C. D. Han, Polym. Eng. Sci. 27 (1987) 964.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Garmendia
    • 1
  • M. Olaizola
    • 1
  • I. Etxeberria
    • 1
  • J. C. Franco
    • 1
  • I. Mondragon
    • 1
  1. 1.Escuela Universitaria Ingeniería Técnica Industrial, Departamento Ingeniería Química y M. AmbienteUniversidad del País Vasco/Euskal Herriko UnibertsitateaSan Sebastián/DonostiaSpain

Personalised recommendations