Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5272–5280 | Cite as

Chemical states of the molybdenum disilicide (MoSi2) surface

  • L. Shaw
  • R. Abbaschian
Article

Abstract

The analysis of the oxidation of MoSi2 at room temperature was carried out using X-ray photoelectron spectroscopy. A clean surface of MoSi2 was obtained by sputter-etching the bulk material inside the spectrometer, and the chemical states of the surface were examined with both high and low take-off angles for the conditions of as-etched and exposed to the air for different times. The commercially pure MoSi2 powder was also investigated in the as-received condition. The analysis indicated that the exposure of a clean molybdenum disilicide to the air for just a few minutes led to the formation of SiO2 and MoO2, and this oxidation would persist at least for more than 24 h with the final surface of MoSi2 being covered by a duplex oxide layer of SiO2 + MoO3.

Keywords

Oxidation Polymer SiO2 Molybdenum Oxide Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fitzer, in “Whisker- and fiber-toughened ceramics”, edited by R. A. Bradley, D. E. Clark, D. C. Larsen and J. O. Stiegler (ASM International, Materials Park, OH, 1988) pp. 165–92.Google Scholar
  2. 2.
    T. C. Lu, A. G. Evans, R. J. Hecht and R. Mehrabian, Acta Metall. Mater. 39 (1991) 1853.CrossRefGoogle Scholar
  3. 3.
    L. Xiao, Y. S. Kim, R. Abbaschian and R. J. Hecht, Mater. Sci. Eng. A144 (1991) 277.CrossRefGoogle Scholar
  4. 4.
    L. Xiao and R. Abbaschian, Metall. Trans. 23A (1992) 2863.CrossRefGoogle Scholar
  5. 5.
    Idem, Mater. Sci. Eng. A155 (1992) 135.CrossRefGoogle Scholar
  6. 6.
    Idem, in “Advanced metal matrix composites for elevated temperatures”, edited by M. N. Goungor, E. J. Lavernia and S. G. Fishman (ASM International, Materials Park, OH, 1991) pp. 21–31.Google Scholar
  7. 7.
    L. Xiao, Y. S. Kim and R. Abbaschian, in “Intermetallic matrix composites”, Proceedings of MRS Symposium, vol. 194, edited by D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking (Materials Research Society, Pittsburgh, PA, 1990) pp. 399–404.Google Scholar
  8. 8.
    L. Xiao and R. Abbaschian, Metall. Trans. 24A (1993) 403.CrossRefGoogle Scholar
  9. 9.
    L. Shaw and R. Abbaschian, Acta Metall. Mater. 42 (1994) 213.CrossRefGoogle Scholar
  10. 10.
    J. J. Petrovic and R. E. Honnell, J. Mater. Sci. 25 (1990) 4453.CrossRefGoogle Scholar
  11. 11.
    J. J. Petrovic, R. E. Honnell, T. E. Mitchell, R. K. Wade and K. J. McClellan, Ceram. Eng. Sci. Proc. 12 (1991) 1633.CrossRefGoogle Scholar
  12. 12.
    F. D. Gac and J. J. Petrovic, J. Am. Ceram. Soc. 68 (1985) C-200.CrossRefGoogle Scholar
  13. 13.
    W. S. Gibbs, J. J. Petrovic and R. E. Honnell, Ceram. Eng. Sci. Proc. 8 (1987) 645.CrossRefGoogle Scholar
  14. 14.
    D. H. Carter, J. J. Petrovic, R. E. Honnell and W. S. Gibbs, ibid. 10 (1989) 1121.CrossRefGoogle Scholar
  15. 15.
    K. Sadananda, H. Jones, J. Feng, J. J. Petrovic and A. K. Vasudevan, Ceram. Eng. Sci. Proc. 12 (1991) 1671.CrossRefGoogle Scholar
  16. 16.
    L. Xiao and R. Abbaschian, J. Am. Ceram. Soc., submitted.Google Scholar
  17. 17.
    C. H. Henager Jr, J. L. Brimhall, J. S. Vetrano and J. P. Hirth, in “Intermetallic matrix composites II”, Proceedings of MRS Symposium, vol. 273, edited by D. Miracle, J. Graves and D. Anton (Materials Research Society, Pittsburgh, PA, 1992) pp. 281–7.Google Scholar
  18. 18.
    C. H. Henager Jr, J. L. Brimhall and J. P. Hirth, in “Synthesis and processing of ceramics: scientific issues”, Proceedings of MRS Symposium, vol. 249, edited by W. E. Rhine, T. M. Shaw, R. J. Gottschall and Y. Chen (Materials Research Society, Pittsburgh, PA, 1992) pp. 523–8.Google Scholar
  19. 19.
    Idem, Mater. Sci. Eng. A155 (1992) 109.CrossRefGoogle Scholar
  20. 20.
    R. M. Aikin Jr, Ceram. Eng. Sci. Proc. 12 (1991) 1643.CrossRefGoogle Scholar
  21. 21.
    S. Maloy, A. H. Heuer, J. Lewandowski and J. Petrovic, J. Am. Ceram. Soc. 74 (1991) 2704.CrossRefGoogle Scholar
  22. 22.
    J. D. Cotton, Y. S. Kim and M. J. Kaufman, Mater. Sci. Eng. A144 (1991) 287.CrossRefGoogle Scholar
  23. 23.
    J. P. A. Lofvander, J. Y. Yang, C. G. Levi and R. Mehrabian, in “Advanced metal matrix composites for elevated temperatures”, edited by M. N. Goungor, E. J. Lavernia and S. G. Fishman (ASM International, Materials Park, OH, 1991) pp. 1–10.Google Scholar
  24. 24.
    R. B. Schwarz, D. R. Srinivasan, J. J. Petrovic and C. J. Maggiore, Mater. Sci. Eng. A155 (1992) 75.CrossRefGoogle Scholar
  25. 25.
    W. A. Maxwell, National Advisory Committee for Aeronautics, Report E52B06 (1952).Google Scholar
  26. 26.
    R. M. Aikin Jr, Scripta Metall. Mater. 26 (1992) 1025.CrossRefGoogle Scholar
  27. 27.
    L. Shaw and R. Abbaschian, J. Am. Ceram. Soc. 76 (1993) 2305.CrossRefGoogle Scholar
  28. 28.
    S. Jayashankar and M. J. Kaufman, J. Mater. Res. 8 (1993) 1428.CrossRefGoogle Scholar
  29. 29.
    R. W. Bartlett, J. W. McCamont and P. R. Gage, J. Am. Ceram. Soc. 48 (1965) 551.CrossRefGoogle Scholar
  30. 30.
    P. J. Meschter, Metall. Trans. 23A (1992) 1763.CrossRefGoogle Scholar
  31. 31.
    T. L. Barr, Appl. Surf. Sci. 15 (1983).Google Scholar
  32. 32.
    K. Kishi and S. Ikeda, Bull. Chem. Soc. Jpn 46 (1973) 341.CrossRefGoogle Scholar
  33. 33.
    V. I. Nefedov, Y. V. Salyn, G. Leonhavdt and R. Scheibe, J. Electron Spectrosc. Relat. Phenom. 10 (1977) 121.CrossRefGoogle Scholar
  34. 34.
    M. Klasson, A. Berndtsson, J. Hedman, R. Nilsson, R. Nyholm and C. Nordling, ibid. 3 (1974) 427.CrossRefGoogle Scholar
  35. 35.
    C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen and J. A. Taylor, J. Vac. Sci. Technol. 21 (1982) 933.CrossRefGoogle Scholar
  36. 36.
    J. W. Robinson, “Practical handbook of spectroscopy” (CRC Press, 1991) p. 394.Google Scholar
  37. 37.
    P. Gajardo, D. Pirotte, C. Defosse, P. Grange and B. Delmon, J. Electron Spectrosc. Relat. Phenom. 17 (1979) 121.CrossRefGoogle Scholar
  38. 38.
    F. P. J. Kerkhof, J. A. Monlijn and A. Heeres, ibid. 14 (1978) 453.CrossRefGoogle Scholar
  39. 39.
    W. A. Brainard and D. R. Wheeler, J. Vac. Sci. Technol. 15 (1978) 1800.CrossRefGoogle Scholar
  40. 40.
    R. J. Cotton, A. M. Guzman and J. W. Rabalais, J. Appl. Phys. 49 (1978) 409.CrossRefGoogle Scholar
  41. 41.
    D. D. Sarma and C. N. R. Rao, J. Electron Spectrosc. Relat. Phenom. 20 (1980) 25.CrossRefGoogle Scholar
  42. 42.
    T. A. Patterson, J. C. Carver, D. E. Leyden and D. M. Hercules, J. Phys. Chem. 80 (1976) 1700.CrossRefGoogle Scholar
  43. 43.
    V. I. Nefedov, M. N. Firsov and I. S. Shaplygin, J. Electron Spectosc. Relat. Phenom. 26 (1982) 65.CrossRefGoogle Scholar
  44. 44.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Wrme, R. Manne and Y. Baer, “ESCA applied to free molecules” (North-Holland, Amsterdam, 1971) pp. 69–73.Google Scholar
  45. 45.
    I. Barin, O. Knacke and O. Kubaschewski, “Thermochemical properties of inorganic substances” (Springer, Berlin, 1977).CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. Shaw
    • 1
  • R. Abbaschian
    • 2
  1. 1.Department of Metallurgy and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations