Journal of Materials Science

, Volume 30, Issue 20, pp 5246–5250 | Cite as

Microstructure formation during crystallization of immiscible phases

  • A. Yu. Dovzhenko
  • P. V. Zhirkov
  • A. V. Kovaleva
  • V. A. Gorshkov


For composite materials such as metal-oxide, metal-ceramics, etc., the formation process of grain microstructure has been theoretically considered from the macrokinetic point of view. The interaction (mainly a thermal one) between two immiscible phases during crystallization was studied. Various types of grain-size distribution were found and distinguished. A comparison with an experimental metallographic specimen of a metal-oxide system was made. Self-propagating high-temperature synthesis was used to produce the material ingots. Limits to the use of the model proposed are revealed.


Polymer Microstructure Crystallization Composite Material Formation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Chernov and H. Muller-Krumbhaar (Eds), “Modern Theory of Crystal Growth. Growth, Properties and Application” (Springer, Berlin, Heidelberg, New York, 1983).Google Scholar
  2. 2.
    J. O. Dirksen and T. A. Ring, Chem. Eng. Sci. 46 (1991) 2389.CrossRefGoogle Scholar
  3. 3.
    A. Yu. Dovzhenko, E. L. Buravova and P. V. Zhirkov, Phys. Met. Metallogr. 73 (1992) 5.Google Scholar
  4. 4.
    P. V. Zhirkov, A. Yu. Dovzhenko and E. L. Buravova, Int. J. Self propag. High Temp. Synth. 1 (1992) 222.Google Scholar
  5. 5.
    P.V. Zhirkov, A. Yu. Dovzhenko, Chem. Eng. Sci 49 (1994) (accepted to publication).Google Scholar
  6. 6.
    A. J. Dammers and S. Radelaar, in “Proceedings of the 10th RISO International Symposium on Metallurgy and Materials Science” (Materials Architecture, Denmark, 1989) p. 319.Google Scholar
  7. 7.
    G. E. W. Schulze and W. A. Schulze, J. Mater. Sci. 28 (1993) 2124.CrossRefGoogle Scholar
  8. 8.
    G. E. W. Schulze and L. O. Schwan, ibid. 28 (1993) 2706.CrossRefGoogle Scholar
  9. 9.
    V. I. Yukhvid, J. Pure Appl. Chem. 64 (1992) 977CrossRefGoogle Scholar
  10. 10.
    A. G. Merzhanov, in “Combustion and Plasma Synthesis of High-Temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 1.Google Scholar
  11. 11.
    O. Yamada, Y. Miyamoto and M. Koizumi, Am. Ceram. Soc. Bull. 64 (1985) 319.Google Scholar
  12. 12.
    Idem, ibid. 70 (1987) 206.CrossRefGoogle Scholar
  13. 13.
    C. C. Agrofiotis, J. A. Puszinski and V. Hlavacek, J. Am. Ceram. Soc. 74 (1991) 2912.CrossRefGoogle Scholar
  14. 14.
    Yu. S. Naiborodenko and V. I. Itin, Fiz. Gorenia Vzryva (5) (1975) 734 (in Russian).Google Scholar
  15. 15.
    J.-P. Lebrat and A. Varma, Combust. Sci. Technol. 88 (1992) 211.Google Scholar
  16. 16.
    J. K. Wright, R. N. Wright and G. A. Moore, Scripta Metall. Mater. 28 (1993) 501.CrossRefGoogle Scholar
  17. 17.
    S. E. Niedzialek, G. C. Stangle and Y. Kaieda, J. Mater. Res. 8 (1993) 2026.CrossRefGoogle Scholar
  18. 18.
    A. K. Bhattacharya, J. Am. Ceram. Soc., 74 (1991) 2707.CrossRefGoogle Scholar
  19. 19.
    N. Sata, N. Sanada, T. Hirano, N. Niino, in “Combustion and Plasma Synthesis of High-Temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 195.Google Scholar
  20. 20.
    S. D. Dunmead, Z. A. Munir, J. B. Holt and D. D. Kingman, J. Mater. Sci. 26 (1991) 2410.CrossRefGoogle Scholar
  21. 21.
    J. Zheng, Y. Miyamoto and O. Yamada, J. Am. Ceram. Soc. 74 (1991) 2197.CrossRefGoogle Scholar
  22. 22.
    M. Volmer and O. Schist, Z. Phys. Chem. B. 35 (1937) 467.Google Scholar
  23. 23.
    Yu. V. Naidich, V. M. Perevertailo and N. F. Grigorenko, “Capillary Phenomena in the Process of Growth and Melting of Crystals” (Naykova Dumka, Kiev, 1983) (in Russian).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Yu. Dovzhenko
    • 1
  • P. V. Zhirkov
    • 1
  • A. V. Kovaleva
    • 1
  • V. A. Gorshkov
    • 1
  1. 1.Institute of Structural MacrokineticsRussian Academy of SciencesChemogolovka, MoscowRussia

Personalised recommendations