Journal of Materials Science

, Volume 30, Issue 20, pp 5241–5245 | Cite as

Storage time effect on free charge relaxation of amorphous poly (ethylene terephthalate)

  • J. Belana
  • M. Mudarra
  • P. Colomer
  • M. Latour


Using thermally stimulated depolarization currents of PET-a electrets formed by the windowing polarization technique, the effect of the storage time previous to depolarization on the free charge relaxation, ρ, has been studied. It was noted that the temperature at which the relaxation maximum appears increases with the storage time, whereas the intensity of the maximum decreases. This behaviour depends on both the polarization temperature and the polarizing field. It was also observed that there is a polarization temperature, the optimal polarization temperature, for which the relaxation maximum temperature does not depend on the polarizing field.


Polymer Ethylene Material Processing Time Effect Storage Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Hilczer, and J. Malecki. “Electrets. Studies in electrical and electronic engineering”, Vol. 14 (Elsevier, PWN-Polish Scientific, Watszawa, 1986).Google Scholar
  2. 2.
    G. M. Sessler, “Electrets. Topics in applied physics”, Vol. 33, edited by G. M. Sessler. (Springer, Berlin, 1980) pp. 81–215.Google Scholar
  3. 3.
    J. Vanderschueren and J. Gassiot, “Thermally stimulated relaxation in solids. Topics in applied physics”, Vol. 37, edited by P. Bräunlich (Springer, Berlin, 1979) pp. 135–223.CrossRefGoogle Scholar
  4. 4.
    J. van Turnhout, “Thermally stimulated discharge of polymer electrets”, (Elsevier Scientific Amsterdam, 1975).Google Scholar
  5. 5.
    J. Marshall and A. Todd, Trans. Faraday Soc. 49 (1953) 67.CrossRefGoogle Scholar
  6. 6.
    T. Hino, J. Appl. Phys. 46 (1973) 1956.CrossRefGoogle Scholar
  7. 7.
    M. Zielinski and M. Kryszewski, Phys. Status Solidi A42 (1977) 305.CrossRefGoogle Scholar
  8. 8.
    I. Duaconu and S. V. Dumitrescu, Europ. Polym. J. 14 (1978) 971.CrossRefGoogle Scholar
  9. 9.
    C. Lacabanne, P. Goyaud and R. F. Boyer, J. Polym. Sci. Polym. Phys. Ed. 18 (1980) 277.CrossRefGoogle Scholar
  10. 10.
    S. K. Shrivastava, J. D. Ranade and A. P. Shrivastava, Thin Solid Films 67 (1980) 201.CrossRefGoogle Scholar
  11. 11.
    A. Gourari, M. Bendaoud, C. Lacabanne and R. F. Boyer, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 889.CrossRefGoogle Scholar
  12. 12.
    J. Belana, M. Mudarra, J. Calaf, J. C. Cañadas and E. Menéndez, IEEE Trans. Elec. 28(2) (1993) 287.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Belana
    • 1
  • M. Mudarra
    • 1
  • P. Colomer
    • 1
    • 2
  • M. Latour
    • 3
  1. 1.Departamento de Física e Ingeniería Nuclear, Laboratorio de Termodinánica y Fisico-QuímicaE. T.S. de Ingenieros Industriales de Terrassa (U.P.C)Terrassa, BarcelonaSpain
  2. 2.Departamento de Máquinas y Motores Térmicos, Laboratorio de Termodinánica y Fisico-QuímicaE. T.S. de Ingenieros Industriales de Terrassa (U.P.C)Terrassa, BarcelonaSpain
  3. 3.Laboratoire de Physique Molèculaire et Cristalline, Groupe de Dynamique des Phases CondenséesUA 223, Université des Sciences et Techniques du LanguedocMontpellier cedex 5France

Personalised recommendations