Journal of Materials Science

, Volume 30, Issue 20, pp 5215–5222 | Cite as

Interfacial reactions in the liquid diffusion couples of Mg/Ni, Al/Ni and Al/(Ni)-Al2O3 systems

  • Chun -Lin Tsao
  • Sinn -Wen Chen


The interfacial reactions between various molten metals and solid plates were investigated in this diffusion couple study. The molten metals were pure magnesium, pure aluminium, aluminium-rich Al-Mg alloy, and aluminium-rich Al-Cu alloys, and the solid plates were pure nickel plate, alumina plate, and nickel-plated alumina plate. The interfacial reactions in the diffusion couples were determined by using optical microscopy, scanning electron microscopy and electron probe microanalysis in regard to the formation of intermetallic phases, the dissolution rates of the nickel plates, and the morphology of the interfaces. Mg2Ni phase was found in the pure Mg/Ni plate diffusion couples, and the Al3Ni and Al3Ni2 phases were observed in the pure Al/Ni plate and Al-alloys/Ni plate diffusion couples. In the Al-Cu alloy/Ni-plated alumina plate diffusion couple, Al2O3 formed at the interface, while spinel particles were found in the diffusion couples of Al-7.4wt% Mg alloy/Ni-plated alumina plate. Experimental difficulty was encountered in preparing the diffusion couples with alumina plate, and a gap existing at the interface prohibited reactions between the molten metal with alumina plate.


Interfacial Reaction Molten Metal Diffusion Couple Alumina Plate Pure Magnesium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. G. Levi, G. J. Abbaschian and R. Mehrabian, Metall Trans. 9A (1978) 697.CrossRefGoogle Scholar
  2. 2.
    M. M. Schwartz, “Composite Materials Handbook” (McGraw-Hill, New York, 1984).Google Scholar
  3. 3.
    W. Lepkowski, G&EN (1991) 4.Google Scholar
  4. 4.
    A. Mortensen and M. J. Koczak, J. Metals 45(3) (1993) 10.Google Scholar
  5. 5.
    F. Delannay, L. Froyen and A. Deruyttere, J. Mater. Sci. 22 (1987) 1.CrossRefGoogle Scholar
  6. 6.
    D. A. Weirauch, Jr, J. Mater. Res. 3 (1988) 729.CrossRefGoogle Scholar
  7. 7.
    N. Mori, H. Miyahara, M. Koga and K. Ogi, J. Jpn Inst. Metals 55 (1991) 444.CrossRefGoogle Scholar
  8. 8.
    A. Munitz, M. Metzger and R. Mehrabian, Metall. Trans. 10A (1979) 1491.CrossRefGoogle Scholar
  9. 9.
    B. F. Quigley, G. J. Abbaschian, R. Wunderlin and R. Mehrabian, ibid. 13A (1982) 93.CrossRefGoogle Scholar
  10. 10.
    G. R. Cappleman, J. F. Watts and T. W. Clyne, J. Mater. Sci. 20 (1985) 2159.CrossRefGoogle Scholar
  11. 11.
    B. Hallstedt, Z.-K. Liu and J. Agren, Mater. Sci. Eng. A129 (1990) 135.CrossRefGoogle Scholar
  12. 12.
    R. Molins, J. D. Bartout and Y. Bienvenu, ibid. A135 (1991) 111.CrossRefGoogle Scholar
  13. 13.
    C.-F. Horng, S.-J. Lin and K.-S. Liu, ibid. A150 (1992) 289.CrossRefGoogle Scholar
  14. 14.
    A. D. McLeod and C. M. Gabryel, Metall. Trans. 23A (1992) 1279.CrossRefGoogle Scholar
  15. 15.
    P. Nash, M. F. Singleton and J. L. Murray, “ASM Handbook”, Vol. 3, “Alloy Phase Diagrams”, edited by H. Baker and H. Okamoto (ASM International, Materials Park, OH, 1992) p. 249.Google Scholar
  16. 16.
    L. S. Castleman and L. L. Seigle, Trans. TMS-AIME 209 (1957)1173.Google Scholar
  17. 17.
    Idem, ibid. 212 (1958) 589.Google Scholar
  18. 18.
    M. M. P. Janssen and G. D. Rieck, ibid. 239 (1967) 1372.Google Scholar
  19. 19.
    M. Nastasi, L. S. Hung and J. W. Mayer, Appl. Phys. Lett. 43 (1983) 831.CrossRefGoogle Scholar
  20. 20.
    I. Bertoti, M. Mohai, A. Csanady, P. B. Barna and H. Berek, Surf. Interf. Anal. 19 (1992) 457.CrossRefGoogle Scholar
  21. 21.
    R. J. Tarento and G. Blaise, Acta Metall. 37 (1989) 2305.CrossRefGoogle Scholar
  22. 22.
    Q. Z. Hong and F. M. d'Heurle, J. Appl. Phys. 72 (1992) 4036.CrossRefGoogle Scholar
  23. 23.
    S.-W. Chen, C.-H. Jan, J.-C. Lin and Y. A. Chang, Metall. Trans 20A (1989) 2247.CrossRefGoogle Scholar
  24. 24.
    W. D. Fields, R. N. Duncan and J. R. Zickgraf, “Metals Handbook”, 9th Edn, Vol. 5, “Surface Cleaning, Finishing, and Coating” (ASM International, Materials Park, OH, 1985) pp. 219–43.Google Scholar
  25. 25.
    A. A. Nayeb-Hashemi and J. B. Clark, “ASM Handbook”, Vol. 3, “Alloy Phase Diagrams”, edited by H. Baker and H. Okamoto (ASM International, Materials Park, OH, 1992) p. 2.281.Google Scholar
  26. 26.
    W. Koster and K. Moeller, ibid., p. 3.11.Google Scholar
  27. 27.
    V. I. Dybkov, J. Mater. Sci. 21 (1986) 3078.CrossRefGoogle Scholar
  28. 28.
    F. J. J. van Loo, Prog. Solid State Chem. 20 (1990) 47.CrossRefGoogle Scholar
  29. 29.
    C. F. Old and I. Macphail, J. Mater. Sci. 4 (1969) 202.CrossRefGoogle Scholar
  30. 30.
    S. K. Kang and V. Ramachandran, Scripta Metall. 14 (1980) 421.CrossRefGoogle Scholar
  31. 31.
    T. Ishida, Trans. Jpn. Inst. Metals 14 (1973) 37.CrossRefGoogle Scholar
  32. 32.
    H. Fidos and H. Schreiner, Z. Metallkde 61 (1970) 225.Google Scholar
  33. 33.
    H. Ikawa, Y. Nakao and T. Isai, Trans. Jpn. Welding Soc. 10 (1979) 24.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Chun -Lin Tsao
    • 1
  • Sinn -Wen Chen
    • 1
  1. 1.Department of Chemical EngineeringNational Tsing-Hua University Hsin-ChuTaiwan

Personalised recommendations