Journal of Materials Science

, Volume 30, Issue 20, pp 5192–5198 | Cite as

Cyclic fatigue of a sintered Al2O3/ZrO2 ceramic

  • Kai Duan
  • Yiu Wing Mai
  • B. Cotterell


A systematic experimental and theoretical study on the crack growth behaviour of a sintered Al2O3/ZrO2 ceramic under cyclic loading is presented. It is found that in the cyclic fatigue experiments conducted on the single-edge-notched beam (SENB) geometry, for similar testing conditions, the crack growth rates are significantly faster than those under static fatigue. Al2O3/ZrO2 therefore suffers genuine mechanical fatigue. Further experiments with the compact tension (CT) geometry show that the mechanical fatigue effect arises mainly from the degradation of the bridging mechanism. A theoretical analysis based on the compliance technique and a power law relationship between the crack-wake bridging stress and the crack-face separation is developed to evaluate quantitatively the degradation of the bridging stress due to cyclic fatigue.


Polymer Fatigue Theoretical Analysis Material Processing Cyclic Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Claussen, J. Steeb and R. F. Pabst, Bull. Am. Ceram. Soc. 56 (1977) 559.Google Scholar
  2. 2.
    A. G. Evans and R. M. Cannon, Acta Metall 34 (1986) 761.CrossRefGoogle Scholar
  3. 3.
    M. Rühle, Mater. Sic. Engng A105/106 (1988) 77.CrossRefGoogle Scholar
  4. 4.
    J. Wang and R. Stevens, J. Mater. Sci. 24 (1989) 3421.CrossRefGoogle Scholar
  5. 5.
    R. C. Garvie and M. F. Goss, in “Advanced ceramics II”, edited by S. Sõmiya (Elsevier, London, 1988) p. 69.Google Scholar
  6. 6.
    R. C. Garvie, M. F. Goss, S. Marshall and C. Urbani, Mater. Sci. Forum 34–36 (1988) 681.Google Scholar
  7. 7.
    M. V. Swain, Mater. Forum 9 (1986) 34.Google Scholar
  8. 8.
    K. Duan, Ph.D. Thesis, The University of Sydney, Sydney (1993).Google Scholar
  9. 9.
    K. Duan, Y.-W. Mai and B. Cotterell, in Proceedings of the twenty-fifth National Symposium on Fracture Mechanics, Bethlehem, PA, June/July 1993 (ASTM special publications, STP 1220) in press.Google Scholar
  10. 10.
    K. Kendall, N. McN. Alford and J. D. Birchall, in Materials Research Society Symposia Proceedings, Vol. 78, Advanced Structural Ceramics, edited by P. F. Becher, M. V. Swain and S. Sõmiya, (Materials Research Society, Pittsburgh, PA, 1987), p. 189.Google Scholar
  11. 11.
    K. Kendall, N. McN. Alford, S. R. Tan and J. D. Birchall, J. Mater. Res. 1 (1986) 120.CrossRefGoogle Scholar
  12. 12.
    K. Duan, Y.-W. Mai and B. Cotterell, Key Engineering Materials, 48–50 (1990) 53.Google Scholar
  13. 13.
    Idem., J. Mater. Sci. 30 (1995) 1405.CrossRefGoogle Scholar
  14. 14.
    K. Duan, B. Cotterell and Y.-W. Mai, in Fracture Mechancis: 23rd Symposium, ASTM STP 1189, edited by R. Chona (ASTM, Philadelphia, 1993) p. 788.Google Scholar
  15. 15.
    Y.-W. Mai, X.-Z. Hu, K. Duan and B. Cotterell, in “Fracture mechanics of ceramics”, 9, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Ya. Shevchenko (Plenum Press, New York, 1992) p. 387.CrossRefGoogle Scholar
  16. 16.
    R. H. Dauskardt, W. C. Carter, D. K. Veirs and R. O. Ritchie, Acta Metall. et Mater. 38 (1990) 2327.CrossRefGoogle Scholar
  17. 17.
    R. H. Dauskardt, D. B. Marshall and R. O. Ritchie, J. Amer. Ceram. Soc. 73 (1990) 893.CrossRefGoogle Scholar
  18. 18.
    R. H. Dauskardt, W. Yu and R. O. Ritchie, J. Amer. Ceram. Soc. 70 (1987) C248.CrossRefGoogle Scholar
  19. 19.
    L. A. Sylva and S. Suresh, J. Mater. Sci. 24 (1989) 1729.CrossRefGoogle Scholar
  20. 20.
    C. J. Beevers, D. C. Cardona and P. Bowen, J. Hard Mater 2 (1991) 207.Google Scholar
  21. 21.
    J.-F. Tsai, C.-S. Yu and D. K. Shetty, J. Amer. Ceram. Soc. 73 (1990) 2992.CrossRefGoogle Scholar
  22. 22.
    S.-Y. Liu and I.-W. Chen, Ibid. 74 (1991) 1197.CrossRefGoogle Scholar
  23. 23.
    Idem., J. Amer. Ceram. Soc. 74 (1991) 1206.CrossRefGoogle Scholar
  24. 24.
    F. Guiu, M. J. Reece and D. A. J. Vaughan, J. Mater. Sci. 26] (1991) 3275.CrossRefGoogle Scholar
  25. 25.
    D. L. Davidson, J. B. Campbell and J. Lankford, Acta Metall. et Mater. 39 (1990) 1319.CrossRefGoogle Scholar
  26. 26.
    M. J. Hoffman, S. Wakayama, Y.-W. Mai, M. Kawahara and T. Kishi, J. Amer. Ceram. Soc. in press.Google Scholar
  27. 27.
    B. Cotterell and Y.-W. Mai, Mater. Forum 11 (1988) 341.Google Scholar
  28. 28.
    Idem., J. Mater. Sci. 22 (1987) 2734.CrossRefGoogle Scholar
  29. 29.
    S. Lathabai, J. Rödel and B. R. Lawn, J. Amer. Ceram. Soc. 74 (1991) 1340.CrossRefGoogle Scholar
  30. 30.
    X.-Z. Hu and Y.-W. Mai, J. Mater. Sci. 27 (1992) 3502.CrossRefGoogle Scholar
  31. 31.
    Idem., J. Amer Ceram. Soc. 75 (1992) 848.CrossRefGoogle Scholar
  32. 32.
    R. M. L. Foote, Y.-W. Mai and B. Cotterell, J. Mech. Phys. Solids 34 (1986) 593.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Kai Duan
    • 1
  • Yiu Wing Mai
    • 1
  • B. Cotterell
    • 2
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic EngineeringThe University of SydneyAustralia
  2. 2.Department of Mechanical and Production EngineeringNational University of SingaporeSingapore

Personalised recommendations