Journal of Materials Science

, Volume 30, Issue 20, pp 5166–5172 | Cite as

Surface segregation of arsenic in iron

  • P. J. Godowski
  • D. Costa
  • P. Marcus


The surface of polycrystalline iron covered by segregated arsenic, phosphorus and sulphur was analysed in a combined electron spectroscopic study by means of Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The saturation coverage of arsenic at 1033 K was determined as 0.33±0.02 monolayer. Sulphur, arsenic and phosphorus segregate in competition. A relation giving the surface coverage from the XPS intensity of adsorbed element is deduced from the experiments and is also calculated. Experimental and calculated values are found to be in relatively good agreement.


Iron Polymer Sulphur Phosphorus Arsenic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Egert and G. Panzner, Surf. Sci. 118 (1982) 345.CrossRefGoogle Scholar
  2. 2.
    M. Rusenberg and H. Viefhaus, Ibid. 172 (1986) 615.CrossRefGoogle Scholar
  3. 3.
    M. Hansen, “Constitution of binary alloys” (McGraw-Hill Book Company, Inc New York 1958).CrossRefGoogle Scholar
  4. 4.
    F. F. Abraham and C. R. Brundle, J. Vac. Sci. Technol. 18 (1981) 506.CrossRefGoogle Scholar
  5. 5.
    Z. Lin, F. Xu and J. H. Weaver, Phys. Rev. B 36 (1987) 5777.CrossRefGoogle Scholar
  6. 6.
    S. A. Chambers, F. Xu, H. W. Chen, I. M. Vitomirov, S. B. Anderson and J. H. Weaver, Ibid. 34 (1986) 6605.CrossRefGoogle Scholar
  7. 7.
    D. Costa, A. Carraretto, P. J. Godowski and P. Marcus, J. Mater. Sci. Lett. 12 (1993) 135.CrossRefGoogle Scholar
  8. 8.
    J. H. Scofield, J. Elec. Spect. Related Phenomena 8 (1976) 129.CrossRefGoogle Scholar
  9. 9.
    F. C. M. J. M. van Delf, A. D. van Langeveld, B. E. Nieuwenhuys, Thin Solid Films 123 (1985) 333.CrossRefGoogle Scholar
  10. 10.
    C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, L. H. Gale, Surf. Interface Anal. 3 (1981) 211.CrossRefGoogle Scholar
  11. 11.
    G. Deroubaix, P. Marcus, Ibid. 18 (1992) 39.CrossRefGoogle Scholar
  12. 12.
    P. J. Godowski, E. L. Hardegree, Acta Phys. Polon. A 85 (1994) 843.CrossRefGoogle Scholar
  13. 13.
    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach and R. E. Weber, “Handbook of Auger electron spectroscopy” (Physical Electronics Industries Inc, Minnesota 1976).Google Scholar
  14. 14.
    M. P. Seah and W. A. Dench, Surf. Interface Anal. 1 (1979) 2.CrossRefGoogle Scholar
  15. 15.
    T. Solomun, R. McIntyre, W. Richtering and H. Gerischer, Surf. Sci. 169 (1986) 414.CrossRefGoogle Scholar
  16. 16.
    D. Briggs and M. P. Seah (eds) Practical surface analysis. Auger and X-ray photoelectron spectroscopy (John Wiley and Sons Ltd, New York 1990).Google Scholar
  17. 17.
    G. P. Schwartz, Surf. Sci. 76 (1978) 113.CrossRefGoogle Scholar
  18. 18.
    J. du Plessis and G. N. van Wyk, J. Phys. Chem. Solids 49 (1988) 1441, 49 (1988) 1451.CrossRefGoogle Scholar
  19. 19.
    Y. Berthier and J. Oudar, C. R. Acad. Sci. Paris 269 C (1969) 149.Google Scholar
  20. 20.
    J. M. Grimal and P. Marcus, Surf. Sci. 249 (1991) 171.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. J. Godowski
    • 1
  • D. Costa
    • 1
  • P. Marcus
    • 1
  1. 1.Laboratoire de Physico-Chimie des Surfaces, CNRS URA 425Ecole Nationale Superieure de Chimie de ParisParisFrance

Personalised recommendations