Journal of Materials Science

, Volume 30, Issue 20, pp 5146–5150 | Cite as

Study of the reaction of lanthanum nitrate with metal oxides present in the scale formed at high temperatures on stainless steel

  • M. I. Ruiz
  • A. Heredia
  • J. Botella
  • J. A. Odriozola


The reaction of lanthanum nitrate with metallic oxides that can be present in the oxide scales formed at elevated temperatures on the surface of stainless steel has been investigated as model systems of the processes occurring during the oxidation of lanthanum coated stainless steel. X-ray diffraction (XRD) experiments have shown that LaCrO3 and LaFeO3 are the most stable compounds. XRD, chemical analysis and thermogravimetric experiments have demonstrated that in the case of Cr2O3, nitrate anions are able to oxidize Cr(III) to Cr(VI) resulting in a precursor phase of perovskite structure that influences the corrosion inhibition of stainless steel at high temperatures.


Polymer Nitrate Stainless Steel Elevated Temperature Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Rapp, Metall. Trans. 15 A (1984) 765.CrossRefGoogle Scholar
  2. 2.
    L. B. Pfeil, UK Pat. 574 088 (1947).Google Scholar
  3. 3.
    J. Stringer, Mater. Sci. Eng. A 120 (1989) 129.CrossRefGoogle Scholar
  4. 4.
    T. N. Rhys-Jones and H. J. Grabke, Mater. Sci. Technol. 4 (1988) 446.CrossRefGoogle Scholar
  5. 5.
    T. Amano and A. Itoh, Appl. Surf. Sci. 60/61 (1992) 677.CrossRefGoogle Scholar
  6. 6.
    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell and M. J. Graham, J. Electrochem. Soc. 134 (1987) 1871.CrossRefGoogle Scholar
  7. 7.
    K. Przybylski, A. J. Garratt-Reed and G. J. Yurek, ibid. 135 (1988) 509.CrossRefGoogle Scholar
  8. 8.
    K. Przybylski and G. J. Yurek, ibid. 135 (1988) 517.CrossRefGoogle Scholar
  9. 9.
    M. Landkof, A. V. Levy, D. H. Boone, R. Gray and E. Yaniv, Corrosion 41 (1985) 344.CrossRefGoogle Scholar
  10. 10.
    P. Y. Hou and J. Stringer, Mater. Sci. Eng. 87 (1987) 295.CrossRefGoogle Scholar
  11. 11.
    G. Bonnet, J. P. Larpin and J. C. Colson, Solid State Ionics 51 (1992) 11.CrossRefGoogle Scholar
  12. 12.
    H. Konno, M. Tokita, A. Furusaki and R. Furuichi, Electrochim. Acta 37 (1992) 2421.CrossRefGoogle Scholar
  13. 13.
    M. I. Ruiz, J. Almagro, A. Heredia, J. Botella, J. J. Benitez and J. A. Odriozola, in “International Conference on Processes and Materials Innovation. Stainless Steel 1993”, Vol. 3, edited by W. Nicodemi (Associazione Italiana di Metalurgia, Milano, 1993) p.77.Google Scholar
  14. 14.
    S. K. Roy, S. Seal, S. K. Bose and M. Caillet, J. Mater. Sci. Lett. 12 (1993) 249.CrossRefGoogle Scholar
  15. 15.
    F. J. Ager, M. A. Respaldiza, J. C. Soares, M. F. Silva, J. Botella, J. J. Benitez and J. A. Odriozola, Acta Metall. Mater. in the press.Google Scholar
  16. 16.
    B. Wunderlich, “Thermal Analysis” (Academic Press, New York, 1990) p.390.Google Scholar
  17. 17.
    R. Alvero, J. A. Odriozola, J. M. Trillo and S. Bernal, J. Chem. Soc. Dalton Trans. (1984) 87.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. I. Ruiz
    • 1
  • A. Heredia
    • 1
  • J. Botella
    • 1
  • J. A. Odriozola
    • 2
  1. 1.AcerinoxCádizSpain
  2. 2.Departamento de Química Inorgánica e Instituto de Ciencia de MaterialesUniversidad de Sevilla-CSICSevillaSpain

Personalised recommendations