Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5139–5145 | Cite as

Non-adiabatic polaron hopping conduction in semiconducting V2O5-Bi2O3 oxide glasses doped with BaTiO3

  • S. Chakraborty
  • M. Sadhukhan
  • D. K. Modak
  • B. K. Chaudhuri
Article

Abstract

BaTiO3-doped (5–40 wt %) 90V2O5-10Bi2O3 (VB) glasses have been prepared by a quick quenching technique. The d.c. electrical conductivities, σd.c., of these glasses have been reported in the temperature range 80–450 K. The electrical conductivity of these glasses, which arises due to the presence of V4+ and V5+ ions, has been analysed in the light of the small-polaron hopping conduction mechanism. The adiabatic hopping conduction valid for the undoped VB glasses (with 80–95 mol % V2O5), in the high-temperature region, is changed to a non-adiabatic hopping mechanism in the BaTiO3-doped VB glasses. At lower temperatures, however, a variable range hopping (VRH) mechanism dominates the conduction mechanism in both the glass systems. Such a change-over from adiabatic to non-adiabatic conduction mechanism is a new feature in transition metal oxide glasses. Various parameters, such as density of states at the Fermi level N(EF), electron wave-function decay constant, α, polaron radius, rp, and its effective mass, m p * , etc., have been obtained for all the glass samples from a critical analysis of the electrical conductivity data satisfying the theory of polaron hopping conduction.

Keywords

Electrical Conductivity BaTiO3 V2O5 Decay Constant Glass Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. N. Greaves, J. Non-Cryst. Solids 11 (1973) 427.CrossRefGoogle Scholar
  2. 2.
    C. H. Chung, J. D. Mackenzie and L. Murawski, Rev. Chem. Miner. 16 (1979) 308.Google Scholar
  3. 3.
    C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 42 (1980) 151.CrossRefGoogle Scholar
  4. 4.
    A. Ghosh and B. K. Chaudhuri, ibid. 83 (1986) 151.CrossRefGoogle Scholar
  5. 5.
    H. Hirashima, Y. Watanabe and T. Yoshida, ibid. 95/96 (1987) 826.Google Scholar
  6. 6.
    J. Livage, J. P. Jolivet and E. Trone, ibid 121 (1990) 35.CrossRefGoogle Scholar
  7. 7.
    H. Gahlman and R. Bruckner, ibid 13 (1974) 355.CrossRefGoogle Scholar
  8. 8.
    A. Ghosh and B. K. Chaudhuri, in “Proceedings of the National Seminar on Semiconductor and Devices”, Calcutta (1986) p. 28.Google Scholar
  9. 9.
    A. Ghosh, J. Appl. Phys. 64 (1988) 2652.CrossRefGoogle Scholar
  10. 10.
    Y. Sakuri and J. Yamaki, J. Electrochem. Soc. 12 (1985) 512.CrossRefGoogle Scholar
  11. 11.
    S. Nakamura and N. Ichinose, J. Non-Cryst. Solids 94/95 (1987) 849.CrossRefGoogle Scholar
  12. 12.
    A. Ghosh and B. K. Chaudhuri, J. Mater. Sci. 22 (1985) 2369.CrossRefGoogle Scholar
  13. 13.
    I. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.CrossRefGoogle Scholar
  14. 14.
    R. Wernickle, in “Grain boundary phenomena in Electronic ceramics”, Vol. I, Edited by L. H. Leison (American Ceramic Society) Westerville, OH, 1981) p. 261.Google Scholar
  15. 15.
    Sahana Chakraborty, A. K. Bera, S. Mollah and B. K. Chaudhuri, J. Mater. Res. 9 (1994) 1932.CrossRefGoogle Scholar
  16. 16.
    G. Arlt, D. Hennings and G. de With, J. Appl. Phys. 58 (1985) 1619.CrossRefGoogle Scholar
  17. 17.
    K. K. Som and B. K. Chaudhuri, Phys. Rev. B 41 (1990) 1581.CrossRefGoogle Scholar
  18. 18.
    Y. Kawamoto, M. Fukuzuko, Y. Ohta and M. Imai, Phys. Chem. Glasses 20 (1979) 54.Google Scholar
  19. 19.
    S. Chakraborty, S. Sadhukhan, K. K. Som, H. S. Maiti and B. K. Chaudhuri, Phil. Mag. B (1995) in press.Google Scholar
  20. 20.
    N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.CrossRefGoogle Scholar
  21. 21.
    M. Sayer and A. Mansingh, Phys. Rev. B 6 (1972) 4629.CrossRefGoogle Scholar
  22. 22.
    B. K. Chaudhuri, K. Chaudhuri and K. K. Som, J. Phys. Chem. Solids. 50 (1989) 1137.CrossRefGoogle Scholar
  23. 23.
    C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 42 (1980) 357.CrossRefGoogle Scholar
  24. 24.
    S. Mollah, K. K. Som, K. Bose, A. K. Chakraborty and B. K. Chaudhuri, Phys. Rev. B 46 (1992) 11075.CrossRefGoogle Scholar
  25. 25.
    I. G. Austin and E. S. Garbett, in “Electronic and structural properties of amorphous semiconductors”, edited by P. G. Lecomber and J. Mort (Academic Press, London, New York) p. 393.Google Scholar
  26. 26.
    T. Holstein, Ann. Phys. (N.Y) 8 (1959) 325.CrossRefGoogle Scholar
  27. 27.
    Idem, ibid. 8 (1959) 343.CrossRefGoogle Scholar
  28. 28.
    V. N. Bogomolov, E. K. Kudinev and U. N. Firsov, Sov. Phys. Solid State 9 (1968) 2502; (Fizika Tverodogo Tela. 9(1967) 3175).Google Scholar
  29. 29.
    A. Miller and E. Abrahams, Phys. Rev. 120 (1960) 745.CrossRefGoogle Scholar
  30. 30.
    D. Emin and T. Holstein, Ann. Phys. (N.Y.) 53 (1969) 439.CrossRefGoogle Scholar
  31. 31.
    N. F. Mott and E. A. Davis, in “Electronic processes in non-crystalline materials”, 2nd Ed (Clarendon, Oxford, 1979).Google Scholar
  32. 32.
    G. P. Triberis, J. Non-Cryst. Solids 74 (1985) 1.CrossRefGoogle Scholar
  33. 33.
    G. P. Triberis and L. R. Friedman, J. Phys. C Solid State Phys. 14 (1981) 4631.CrossRefGoogle Scholar
  34. 34.
    J. Schnakenberg, Phys. Status Solidi 28 (1968) 623.CrossRefGoogle Scholar
  35. 35.
    G. E. Pike, Phys. Rev. B 6 (1972) 1572.CrossRefGoogle Scholar
  36. 36.
    A. R. Long, Adv. Phys. 31 (1982) 553.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Chakraborty
    • 1
  • M. Sadhukhan
    • 1
  • D. K. Modak
    • 1
  • B. K. Chaudhuri
    • 1
  1. 1.Solid State Physics Department, Glass and Ceramic SectionIndian Association for the Cultivation of ScienceCalcuttaIndia

Personalised recommendations