Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5130–5138 | Cite as

Thermal decomposition of ferric and ammonium sulphates obtained by bio-oxidation of water pickling liquors with Thiobacillus ferrooxidans

  • A. Lopez-Delgado
  • F. A. Lopez
Article

Abstract

Sulphuric water pickling liquor containing ferrous sulphates was oxidized by Thiobacillus ferrooxidans at different pHs. The oxidized solution was then evaporated and crystallized, and products characterized by X-ray powder diffraction, X-ray high temperature powder diffraction and Fourier transform infrared (FTIR) spectrometry. The thermal decomposition of these materials, studied by calorimetric and thermogravimetric techniques, shows that iron(III) hydroxysalts and monoammonium and triammonium salts are formed during the oxidation-evaporation-crystallization process. However, this formation depends upon pH.

Keywords

Iron Polymer Fourier Fourier Transform Thermal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O. Burckle and H. M. Freeman, in “Proceedings of Iron Control in Hydrometallurgy”, edited by E. Horwood, Chichester, 1986, p. 754.Google Scholar
  2. 2.
    F. J. Garcia, A. Rubio, E. Sainz, P. Gonzalez and F. A. Lopez, FEMS Microb. Rev. 14 (1994) 397.CrossRefGoogle Scholar
  3. 3.
    F. A. Lopez, F. J. Garcia, A. Rubio and P. Gonzalez, in Report 7261/02/512 of Commission of the European Communities, July 1994.Google Scholar
  4. 4.
    C. A. Schnaitman, M. S. Korczynski and D. G. Lundgren, J. Bacteriol. 99 (1969) 552.Google Scholar
  5. 5.
    J. L. Barron and D. R. Lueking, Appl. Environ. Microbiol. 56 (1990) 2801.Google Scholar
  6. 6.
    L. Toro, R. de Santis, M. Pelino, N. M. Ivagnes and C. Cantalini, “Fundamental and applied biohydrometallurgy” (Elsevier, Amsterdam, 1986) pp. 476–478.Google Scholar
  7. 7.
    K. C. Ivarson, G. J. Ross and N. M. Milles, Soil Sci. Soc. Amer. 43 (1979) 908.CrossRefGoogle Scholar
  8. 8.
    N. Lazaroff, W. Sigal and A. Wasserman, Appl. Environ. Microbiol. 43 (1982) 924.Google Scholar
  9. 9.
    M. P. Silverman and D. G. Lundgren, J. Bacteriol. 77 (1959) 642.Google Scholar
  10. 10.
    C. J. Serna, C. Parada and J. V. Garcia Ramos, Spectrochim. Acta 42A (1986) 729.CrossRefGoogle Scholar
  11. 11.
    S. Lopez Andres, “Cristaloquimica y propiedades físicoquímicas de materiales tipo jarosita”, (Universite Complutense, Madrid, 1987).Google Scholar
  12. 12.
    D. A. Powers, G. R. Rossman, H. J. Shugar and H. B. Gray, J. Solid State Chem. 13 (1975) 1.CrossRefGoogle Scholar
  13. 13.
    M. M. Shokarev, E. V. Margulis, F. I. Vershinina, L. I. Beisekeeva and L. A. Savchenko, Russ. J. Inorg. Chem. 17 (1972) 1293.Google Scholar
  14. 14.
    M. Foldvari, F. Paulik and J. Paulik, J. Thermal Anal. 33 (1988) 121.CrossRefGoogle Scholar
  15. 15.
    Outokumpu Research, “Chemical Reaction and Equilibrium Software” (1992).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Lopez-Delgado
    • 1
  • F. A. Lopez
    • 1
  1. 1.Department of Materials RecyclingNational Center of Metallurgical Research(CSIC), AvdaMadridSpain

Personalised recommendations