Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5103–5109 | Cite as

Effect of fluorination on preparation of Bi(Pb)SCCO 2 2 2 3 by the citrate precursor process

  • J. H. Greenberg
  • L. Ben-Dor
  • V. Beilin
  • D. Szafranek
Article

Abstract

Citrate precursor technology was used to prepare fluorine substituted Bi(Pb)SCCO 2 2 2 3 superconducting phase. Samples with the nominal composition of up to three F atoms per formula were synthesized. A number of experimental methods have been used to characterize the samples and to trace the phase transformations during the preparation process: DTA/TGA, XRD, EPMA (WDS and EDS), atomic absorption, potentiometry with fluoride selective electrode, resistance and inductive measurements. Fluorine was shown to enhance considerably the formation of the 2 2 2 3 phase. Thermodynamic calculations of P-T-X equilibrium in the Bi-Pb-Sr-Ca-Cu-O-F-C-H-N system were made in a wide temperature range to determine the composition of the vapours coexisting with the solid phases at different stages of the preparation process.

Keywords

Polymer Citrate Fluoride Phase Transformation Atomic Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. W. P. James, S. M. Zahurak and D. W. Murphy, Nature 338 (1989) 240.CrossRefGoogle Scholar
  2. 2.
    A. Tighezza, J. Rehspringer and M. Drillon, Physica C 198 (1992) 209.CrossRefGoogle Scholar
  3. 3.
    S. R. Ovshinsky, R. T. Young, D. D. Alltred, G. Demaggio and G. A. van der Leeden, Phys. Rev. Lett. 58 (1987) 2579.CrossRefGoogle Scholar
  4. 4.
    H. H. Wang, A. M. Kini, H. I. Kao, E. H. Appelman, A. R. Thompson, R. E. Botto, K. D. Calson, J. M. Williams and M. Y. Chen, Inorg. Chem. 27 (1988) 5.CrossRefGoogle Scholar
  5. 5.
    X. Gao, X. Wu, H. Yan, Z. Yin, C. Lin, Y. Fu and W. Xie, Modern Phys. Lett. 4 (1990) 137.CrossRefGoogle Scholar
  6. 6.
    X. Gao, J. Li, D. Gao, G. Zheng and S. Gao, ibid. 6 (1992) 943.CrossRefGoogle Scholar
  7. 7.
    R. P. Gupta, W. S. Khokle, J. C. Pachauri, C. C. Triphathi, B. C. Pathak and G. S. Virdi, Appl. Phys. Lett. 54 (1989) 570.CrossRefGoogle Scholar
  8. 8.
    M. Levinson, S. S. P. Shah and N. Naito, ibid. 53 (1988) 922.CrossRefGoogle Scholar
  9. 9.
    S. Horiuchi, K. Skoda and Y. Matsei, J. Ceram. Soc. Jpn. Intern. Ed. 97 (1989) 183.CrossRefGoogle Scholar
  10. 10.
    W. Qin, Z. Xianghua, C. Jianguo, G. Xiaohui, W. Xiaoling and E. Uinsen, Physica C 208 (1993) 347.CrossRefGoogle Scholar
  11. 11.
    E. Kemnitz, S. Scheurell, S. W. Naumov, P. E. Kasin, V. I. Pershin and R. K. Kremer, Eur. J. Sol. State Inorg. Chem. 30 (1993) 701.Google Scholar
  12. 12.
    Y. Idemoto, K. Shizuka, V. Yasuda and K. Fueki, Physica C 211 (1993) 36.CrossRefGoogle Scholar
  13. 13.
    Y. Idemoto, K. Shizuka and K. Fueki, ibid. 225 (1994) 127.CrossRefGoogle Scholar
  14. 14.
    Thermodynamic Database Ivtantermo, Russian Academy of Science.Google Scholar
  15. 15.
    P. Majewski, Adv. Mater. (1994) in press.Google Scholar
  16. 16.
    G. B. Sinyarev, N. A. Vatolin, B. G. Trusov and G. K. Moiseev, “Application of computers for thermodynamic calculations of metallurgical processes” (Nauka Publishers, Moscow, 1982).Google Scholar
  17. 17.
    V. B. Lazarev, K. S. Gavrichev and J. H. Greenberg, Pure & Appl. Chem. 63 (1991) 1341.CrossRefGoogle Scholar
  18. 18.
    L. Ben-Dor, H. Diab and I. Felner, J. Sol. State. Chem. 88 (1990) 183.CrossRefGoogle Scholar
  19. 19.
    M. Kakihana, M. Yoshimura, H. Mezaki, H. Yasuoka and L. Borjesson, J. Appl. Phys. 71 (1992) 3904.CrossRefGoogle Scholar
  20. 20.
    Y. K. San and W. Y. Lee, Physica C 212 (1993) 37.CrossRefGoogle Scholar
  21. 21.
    J. H. Claasen, M. E. Reeves and R. J. Soulen, Rev. Sci. Instrum. 62 (1991) 996.CrossRefGoogle Scholar
  22. 22.
    V. E. Kazin, T. E. Oskina and Yu. D. Tretyakov, J. Appl. Supercond. 1 (1993) 1007.CrossRefGoogle Scholar
  23. 23.
    S. M. Green, Yu Mei, A. E. Manzi, H. L. Luo, R. Ramesh and G. Thomas, J. Appl. Phys. 66/2 (1989) 728.CrossRefGoogle Scholar
  24. 24.
    G. Spinolo, U. Anselmi-Tamburini, P. Ghigna, G. Chiodelli and G. Flor, J. Phys. Chem. Solids 53 (1992) 591.CrossRefGoogle Scholar
  25. 25.
    M. Onoda, A. Yamato, E. Takayamamuromachi and S. Takekawa, Jpn. J. Appl. Phys. 27 (1988) L833.CrossRefGoogle Scholar
  26. 26.
    R. S. Roth, N. M. Hwang, C. J. Rawn, B. P. Burton and J. J. Ritter, J. Amer. Ceram. Soc. 74 (1991) 2148.CrossRefGoogle Scholar
  27. 27.
    M. R. De Guire, N. P. Bansal, D. E. Farrel, V. Finan, C. J. Kim, R. J. Hills and C. J. Allen, Physica C 179 (1991) 333.CrossRefGoogle Scholar
  28. 28.
    P. Strobel, J. C. Toledano, D. Morin, J. Schneck, G. Vacquier, O. Monnereau, J. Primot and T. Fournier, ibid. 201 (1992) 27.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. H. Greenberg
    • 1
  • L. Ben-Dor
    • 1
  • V. Beilin
    • 2
  • D. Szafranek
    • 3
  1. 1.Department of Inorganic and Analytical ChemistryHebrew UniversityJerusalemIsrael
  2. 2.School of Applied Science and TechnologyHebrew UniversityJerusalemIsrael
  3. 3.EPMA Lab, Institute of Earth SciencesHebrew UniversityJerusalemIsrael

Personalised recommendations