Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5078–5086 | Cite as

Interpretation of the impedance spectroscopy of cement paste via computer modelling

Part III Microstructural analysis of frozen cement paste
  • R. A. Olson
  • B. J. Christensen
  • R. T. Coverdale
  • S. J. Ford
  • G. M. Moss
  • H. M. Jennings
  • T. O. Mason
  • E. J. Garboczi
Article

Abstract

The d.c. conductivity, σ, and low-frequency relative dielectric constant, k, of Portland cement paste were monitored, using impedance spectroscopy, during cooling from room temperature down to -50 °C. Dramatic decreases in the values of σ and k, as great as two orders of magnitude, occurred at the initial freezing point of the aqueous phase in the macropores and larger capillary pores. This result provides strong experimental support for the dielectric amplification mechanism, proposed in Part II of this series, to explain the high measured low-frequency relative dielectric constant of hydrating Portland cement paste. Only gradual changes in the electrical properties were observed below this sudden drop, as the temperature continued to decrease. The values of σ and k of frozen cement paste, at a constant temperature of -40 °C, were dominated by properties of calcium-silicate-hydrate (C-S-H) and so increased with the degree of hydration of the paste, indicating a C-S-H gel percolation threshold at a volume fraction of approximately 15%–20%, in good agreement with previous predictions. Good agreement was found between experimental results and digital-image-based model computations of σ at -40 °C. Freeze-thaw cycling caused a drop in the dielectric constant of paste in the unfrozen state, indicating that measurements of k could be useful for monitoring microstructural changes during freeze-thaw cycling and other processes that gradually damage parts of the cement paste microstructure.

Keywords

Dielectric Constant Impedance Spectroscopy Portland Cement Microstructural Change Percolation Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Christensen, T. O. Mason and H. M. Jennings, J. Am. Ceram. Soc. 75 (1992) 939.CrossRefGoogle Scholar
  2. 2.
    B. J. Christensen, R. T. Coverdale, R. A. Olson, S. J. Ford, E. J. Garboczi, T. O. Mason and H. M. Jennings, ibid. 77 (1994) 2789.CrossRefGoogle Scholar
  3. 3.
    R, T. Coverdale, E. J. Garboczi, H. M. Jennings, B. J. Christensen and T. O. Mason, ibid. 76 (1993) 1513.CrossRefGoogle Scholar
  4. 4.
    B. J. Christensen, PhD Thesis, Northwestern University (1993).Google Scholar
  5. 5.
    C. A. Scuderi, T. O. Mason and H. M. Jennings, J. Mater. Sci. 26 (1991) 349.CrossRefGoogle Scholar
  6. 6.
    B. J. Christensen, T. O. Mason and H. M. Jennings, Mater. Res. Soc. Symp. Proc. 245 (1991) 271.CrossRefGoogle Scholar
  7. 7.
    P. Gu, P. Xie, J. J. Beaudoin and R. Brousseau, Cem. Concr. Res. 22 (1992) 833.CrossRefGoogle Scholar
  8. 8.
    idem. ibid. 23 (1993) 157.CrossRefGoogle Scholar
  9. 9.
    P. Xie, P. Gu, Z. Xu and J. J. Beaudoin, ibid. 23 (1993) 359.CrossRefGoogle Scholar
  10. 10.
    R. T. Coverdale, B. J. Christensen, T. O. Mason, H. M. Jennings, E. J. Garboczi and D. P. Bentz, J. Mater. Sci., in press.Google Scholar
  11. 11.
    idem, ibid. 29 (1994) 4984.CrossRefGoogle Scholar
  12. 12.
    J. R. MacDonald (ed.), “Impedance Spectroscopy Emphasizing Solid Materials and Systems”, (Wiley, New York, 1987) p. 195.Google Scholar
  13. 13.
    P. N. Sen, Geophysics 46 (1981) 1714.CrossRefGoogle Scholar
  14. 14.
    F. Brouers, A. Ramsamugh and V. V. Dixit, J. Mater. Sci. 22 (1987) 2759.CrossRefGoogle Scholar
  15. 15.
    C. L. Jackson and G. B. Mckenna, J. Chem. Phys. 93 (1990) 9002.CrossRefGoogle Scholar
  16. 16.
    B. A. Boukamp, “Equivalent Circuit (EQUIVCRT.PAS)”, University of Twente; Department of Chemical Technology; P. O. Box 217-7500 AE Enschede; The Netherlands (1988).Google Scholar
  17. 17.
    R. Defay, I. Prigogine, A. Bellemans and D. H. Everett, “Surface Tension and Adsorption” (Wiley, New York, 1966).Google Scholar
  18. 18.
    R. E. Beddoe, and M. J. Setzer, Cem. Concr. Res. 18 (1988) 249.CrossRefGoogle Scholar
  19. 19.
    C. de Fontenay and E. J. Sellevold, in, “Durability of Building Materials and Components”, ASTM STP 691, Edited by P. J. Serada and G. G. Litvan (American Society for Testing and Materials, Philadelphia, PA, 1980) p. 425.CrossRefGoogle Scholar
  20. 20.
    F. H. Wittmann, J. Am. Ceram Soc. 56 (1973) p. 409.CrossRefGoogle Scholar
  21. 21.
    B. Zech and M. J. Setzer, Mater, and Struct. 21 (1988) 323.CrossRefGoogle Scholar
  22. 22.
    H. Bager and E. J. Sellevold, Cem. Concr. Res. 16 (1986) 709.CrossRefGoogle Scholar
  23. 23.
    Idem, ibid. 16 (1986) 835.CrossRefGoogle Scholar
  24. 24.
    N. Banthia, M. Pigeon and L. Lachance, ibid. 19 (1989) 939.CrossRefGoogle Scholar
  25. 25.
    D. P. Bentz and E. J. Garboczi, ibid. 21 (1991) 325.CrossRefGoogle Scholar
  26. 26.
    S. S. Yoon, S. Y. Kim and H. C. Kim, J. Mater. Sci. 29 (1994) 1910.CrossRefGoogle Scholar
  27. 27.
    S. J, Ford, T. O. Mason, B. J. Christensen, R. T. Coverdale, H. M. Jennings and E. J. Garboczi, J. Mater. Sci. in press.Google Scholar
  28. 28.
    S. Mindess and J. F. Young, “Concrete” (Prentice-Hall Englewood Cliffs, NJ, 1981) p. 104.Google Scholar
  29. 29.
    E. J. Garboczi and D. P. Bentz, J. Mater. Sci. 27 (1992) 2083.CrossRefGoogle Scholar
  30. 30.
    D. S. Mc Lachlan, M. Blaszkiewicz and R. E. Newnham, J. Am. Ceram. Soc. 73 (1990) 2187.CrossRefGoogle Scholar
  31. 31.
    Z. Hashin, J. Appl. Mech. 50 (1983) 481.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. A. Olson
    • 1
  • B. J. Christensen
    • 1
  • R. T. Coverdale
    • 1
  • S. J. Ford
    • 1
  • G. M. Moss
    • 1
  • H. M. Jennings
    • 1
  • T. O. Mason
    • 1
  • E. J. Garboczi
    • 2
  1. 1.Center for Advanced Cement-Based MaterialsNorthwestern UniversityEvanstonUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations