Journal of Materials Science

, Volume 30, Issue 20, pp 5073–5077 | Cite as

Low-cycle fatigue of polycrystalline α-iron modified by mutually immiscible silver-ion implantation

  • H. W. Wang
  • D. Z. Yang
  • W. D. Shi
  • S. Patu


Cyclic deformations of annealed pure polycrystalline α-iron with and without further mutually immiscible silver-ion implantation (90 keV, 6×1016 ions cm−2) were studied in a plastic strain-controlled tension-compression fatigue test (triangular loading waveform, frequency 0.02–0.3 Hz, and plastic strain range 3×10−3–1.2×10−2). The obtained plastic strain-life (Δɛp-Nf) curves showed that the iron specimens could survive for a greater number of cycles before failure when implanted. Comparison of the cyclic stress-strain curves suggested that the implanted specimens had maintained a relatively more stable microstructural change than those unimplanted ones which had undergone a violent cyclic hardening during cyclic deformation. This is proposed to be a strong indication that the fatigue ductility has been improved and the cross slip of screw dislocations, which leads to the evolution of the persistent slip bands for fatigue damage, was hindered to some extent after ion implantation.


Fatigue Ductility Fatigue Test Slip Band Fatigue Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Wang, D.Z. Yang, W. D. Shi and S. Patu, Scripta Metall. Mater., 32 (1995) 2001.CrossRefGoogle Scholar
  2. 2.
    O. Kubaschewski (ed.), “Iron Binary Phase Diagrams” (Springer, Berlin, 1982) p. 3.Google Scholar
  3. 3.
    D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng. 27 (1977) 137.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 37 (1979) 111.CrossRefGoogle Scholar
  5. 5.
    Idem, ibid. 46 (1980) 209.CrossRefGoogle Scholar
  6. 6.
    D. Kuhlmann-Wilsdorf, ibid. 39 (1979) 127.CrossRefGoogle Scholar
  7. 7.
    C. Laird, J. M. Finney and D. Kuhlmann-Wilsdorf, ibid. 50 (1981) 127.CrossRefGoogle Scholar
  8. 8.
    H. Mughrabi, ibid. 33 (1978) 207CrossRefGoogle Scholar
  9. 9.
    A. S. Chen and C. Laird, ibid. 51 (1981) 111.CrossRefGoogle Scholar
  10. 10.
    H. Mughrabi, in “Proceedings of the 5th International Conference on Strength of Metals and Alloys”, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon, Oxford, 1980) Vol. 3, p. 1615.Google Scholar
  11. 11.
    H. Herman, Nucl. Instrum. Meth. 182/183 (1981) 887.CrossRefGoogle Scholar
  12. 12.
    S. T. Picraux and L. K. Poke, Science 226 (1984) 615.CrossRefGoogle Scholar
  13. 13.
    G. K. Hubler, L. I. Singer and C. R. Clayton, Mater. Sci. Eng. 69 (1985) 203.CrossRefGoogle Scholar
  14. 14.
    M. Grenness, M. W. Thompson and R. W. Cahn, J. Appl Electrochem. 4 (1974) 211.CrossRefGoogle Scholar
  15. 15.
    S. Patu, M. H. Xu and Z.G. Wang, Mater. Sci. Eng. A115 (1989) 323.CrossRefGoogle Scholar
  16. 16.
    J. Mendez, P. Violan and M. F. Denanot, Nucl. Instrum. Meth. Phys. Res. B19/20 (1987) 232.CrossRefGoogle Scholar
  17. 17.
    D. J. Morrison, J.W. Jones, D.E. Alexander and G. S. Was, Metall. Trans. 22A (1991) 1633.CrossRefGoogle Scholar
  18. 18.
    D. S. Grummon, J. W. Jones and G. S. Was, ibid. 19A (1988) 2775.CrossRefGoogle Scholar
  19. 19.
    D. S. Grummon, J.W. Jones, J.M. Meridon, G.S. Was and L. E. Rehn, Nucl. Instrum. Meth. Phys. Res. B19/20 (1987) 227.CrossRefGoogle Scholar
  20. 20.
    L. M. Brown, Metall. Trans. 22A (1991) 1693.CrossRefGoogle Scholar
  21. 21.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, 2nd Edn (Wiley, New York, 1983).Google Scholar
  22. 22.
    J. O. Stiegler and L.K. Mansur, Ann. Rev. Mater. Sci. 9 (1979) 405.CrossRefGoogle Scholar
  23. 23.
    D. M. Follstaedt and J. A. Knapp, in “Laser-Solid Interactions and Transient Thermal Processing of Materials”, edited by J. Narayan, W.L. Brown and R.A. Lemons (North Holland, New York, 1983) p. 745.Google Scholar
  24. 24.
    L. F. Coffin Jr, Trans. ASME 76 (1954) 931.Google Scholar
  25. 25.
    S.S. Manson, paper presented at the Heat Transfer Symposium, University of Michigan Engineering Research Institute (1953) p. 9.Google Scholar
  26. 26.
    B. Sestak, in “Proceedings of the 5th International Conference on Strength of Metals and Alloys”, edited by P. Haasen, V. Gerold and G. Kostorz, (Pergamon, Oxford, 1980) Vol. 3, p. 1461.Google Scholar
  27. 27.
    A. Seeger and B. Sestak, Scripta Metall. 5 (1971) 875.CrossRefGoogle Scholar
  28. 28.
    V. Vitek, Cryst. Latt. Defects 5 (1974) 1.Google Scholar
  29. 29.
    L. P. Kubin and F. Louchet, Philos. Mag. 38 (1978) 205.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. W. Wang
    • 1
  • D. Z. Yang
    • 2
  • W. D. Shi
    • 2
  • S. Patu
    • 3
  1. 1.Corrosion and Protection CentreUniversity of Manchester Institute of Science and TechnologyManchesterUK
  2. 2.Department of Materials EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.The State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal ResearchAcademia SinicaShenyangPeople’s Republic of China

Personalised recommendations