Advertisement

Journal of Materials Science

, Volume 30, Issue 20, pp 5065–5072 | Cite as

Stress-strain rate relations for high-temperature deformation of two-phase Al-Cu alloys

  • P. K. Bakshi
  • B. P. Kashyap
Article

Abstract

Al-Cu alloys containing 6, 11, 17, 24 and 33 wt% Cu, annealed for 0.5–100 h, were deformed by the differential strain-rate test technique over a strain-rate range of ≈4×10−6 to 3×10−2s−1 at temperatures ranging from 460–540°C. Superplastic behaviour, with strain-rate sensitivity, m≈0.5, and activation energy, Q=171.5 kJ mol−1, is shown by the Al-24Cu and Al-33Cu alloys at lower strain rates and higher temperatures. All the alloys show m≲0.20 at higher strain rates, but the average activation energy for deformation of the Al-6Cu, Al-11Cu, and Al-17Cu alloys is evaluated to be 480.7 kJ mol−1, in contrast to a lower value of 211 kJ mol−1 for the Al-24Cu and Al-33Cu alloys. Instead of grain size, the mean free path between θ particles is suggested to be a more appropriate microstructural parameter for the constitutive relationship for deformation of the Al-Cu alloys.

Keywords

Activation Energy Free Path High Strain Rate Lower Strain Test Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Mukherjee, J. E. Bird and J. E. Dorn, Trans. ASM 62 (1969) 155.Google Scholar
  2. 2.
    J. W. Edington, K. N. Melton and C. P. Cutler, Prog. Mater. Sci. 21 (1976) 61.CrossRefGoogle Scholar
  3. 3.
    M. Suéry and B. Baudelet, Res. Mech. 2 (1981) 163.Google Scholar
  4. 4.
    M. Kobayashi and M. Miyagawa, Trans. ISIJ 27 (1987) 685.CrossRefGoogle Scholar
  5. 5.
    D. L. Holt and W. A. Backofen, Trans. ASM 59 (1966) 755.Google Scholar
  6. 6.
    M. J. Stowell, J. L. Robertson and B. M. Watts, Metal Sci. J. 3 (1969) 41.CrossRefGoogle Scholar
  7. 7.
    R. D. Schmidt-Whitley, Z. Metallkd 64 (1973) 552.Google Scholar
  8. 8.
    G. Rai and N. J. Grant, Metall. Trans. 6A (1975) 385.CrossRefGoogle Scholar
  9. 9.
    K. A. Padmanabhan and G. J. Davies, Metal Sci. 11 (1977) 177.CrossRefGoogle Scholar
  10. 10.
    Y. Kobayashi, Y. Ishida and M. Kato, Scripta Metall. 11 (1977) 51.CrossRefGoogle Scholar
  11. 11.
    N. Furushiro and S. Hori, ibid. 12 (1978) 35.CrossRefGoogle Scholar
  12. 12.
    G. A. Nassef, M. Suery and El-Ashram, Metals Techno. 9 (1982) 355.CrossRefGoogle Scholar
  13. 13.
    B. P. Kashyap and K. Tangri, Metall. Trans. 181A (1987) 417.CrossRefGoogle Scholar
  14. 14.
    E. Sato, K. Kuribayashi and R. Horiuchi, J. Jpn Inst. Metals 53 (1989) 885.CrossRefGoogle Scholar
  15. 15.
    A. H. Chokshi and T. G. Langdon, Mater. Sci. Technol. 5 (1989) 435.CrossRefGoogle Scholar
  16. 16.
    J. R. Cahoon, Metal Sci. 9 (1975) 346.CrossRefGoogle Scholar
  17. 17.
    P. K. Chaudhury and F. A. Mohamed, Mater. Sci. Eng. A 101 (1988) 13.Google Scholar
  18. 18.
    G. S. Sohal, Mater. Sci. Technol. 4 (1988) 811.CrossRefGoogle Scholar
  19. 19.
    P. K. Bakshi and B. P. Kashyap, J. Mater. Sci. 29 (1994) 2063.CrossRefGoogle Scholar
  20. 20.
    B. I. Edelson and W. M. Baldwin, Trans. ASM 55 (1962) 230.Google Scholar
  21. 21.
    M. F. Ashby, Z. Metallkd 55 (1964) 5.Google Scholar
  22. 22.
    C. W. Corti, P. Cotterill and G. A. Fitzpatrick, Int. Metall. Rev. 19 (1974) 77.CrossRefGoogle Scholar
  23. 23.
    A. G. Guy, “Elements of physical metallurgy,” 2nd Edn. (Addison-Wesley, Reading, MA, 1959) p. 297.Google Scholar
  24. 24.
    D. W. Livesey and N. Ridley, J. Mater. Sci. 27 (1982) 2257.CrossRefGoogle Scholar
  25. 25.
    T. Chanda and G. S. Murty, ibid. 27 (1992) 5931.CrossRefGoogle Scholar
  26. 26.
    E. O. Hall, Proc. Phys. Soc., Lond. B64 (1951) 747.CrossRefGoogle Scholar
  27. 27.
    N. J. Petch, J. Iron Steel Inst. 174 (1953) 25.Google Scholar
  28. 28.
    D. Dew-Hughes and W. D. Robertson, Acta Metall. 8 (1960) 147.CrossRefGoogle Scholar
  29. 29.
    P. K. Bakshi and B. P. Kashyap, Scripta Metall. Mater. 29 (1993) 1073.CrossRefGoogle Scholar
  30. 30.
    B. A. Movchan, Mater. Sci. Eng. A138 (1991) 109.CrossRefGoogle Scholar
  31. 31.
    O. D. Sherby and J. Wadsworth, Prog. Mater. Sci. 33 (1989) 169.CrossRefGoogle Scholar
  32. 32.
    S. Hori, N. Furushiro and S. Kawaguchi, J. Jpn Inst. Light Metals 25 (1975) 361.CrossRefGoogle Scholar
  33. 33.
    T. H. Courtney, “Mechanical behaviour of materials”, (McGraw-Hill, Singapore, 1990) p. 193.Google Scholar
  34. 34.
    E. Ho and G. C. Weatherly, Acta Metall. 23 (1975) 1451.CrossRefGoogle Scholar
  35. 35.
    E. A. Brandes (ed.), “Smithells metals reference book”, 6th Edn (Butterworths, London, 1983) p 13.9.Google Scholar
  36. 36.
    J. Cadek, “Creep in metallic materials”, 1st Edn. (Elsevier, Amsterdam, 1988) pp. 115, 176.Google Scholar
  37. 37.
    A. W. Thompson, Metall. Trans. 8A (1977) 833.CrossRefGoogle Scholar
  38. 38.
    O. D. Sherby, R. H. Klundt and A. K. Miller, ibid. 8A (1977) 843.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. K. Bakshi
    • 1
  • B. P. Kashyap
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of TechnologyBombayIndia

Personalised recommendations