Journal of Materials Science

, Volume 30, Issue 20, pp 5049–5055 | Cite as

Preparation of micro-coiled carbon fibres by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds

  • S. Motojima
  • Y. Itoh
  • S. Asakura
  • H. Iwanaga


Micro-coiled carbon fibres were prepared by the transition metal-activated pyrolysis of acetylene containing a small amount of sulphur compounds, and the preparation conditions were examined in detail. The coiled carbon fibres grew at the reaction temperatures of 700–850 °C and thiophene gas flow rates of 0.14–0.45 standard cm3min−1 (0.10–0.35 vol % reaction atmosphere). The optimum values depended on the type of metal catalysts used. Among the metal catalysts used, nickel, titanium and tungsten were the most effective for the growth of the coiled carbon fibres and a maximum yield of about 50%–55% was obtained. The bulk resistivity of the coiled carbon fibres decreased with increasing bulk density and was 100 S−1 cm at a bulk density of 1.


Titanium Nickel Tungsten Pyrolysis Reaction Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Motojima, S. Ueno, T. Hattori and K. Goto, Appl. Phys. Lett. 54 (1989) 1001.CrossRefGoogle Scholar
  2. 2.
    S. Motojima, S. Ueno, T. Hattori and H. Iwanaga, J. Crystal Growth 96 (1989) 383.CrossRefGoogle Scholar
  3. 3.
    W. R. Davis, R. J. Slawson and G. R. Rigby, Nature 171 (1953) 756.CrossRefGoogle Scholar
  4. 4.
    Idem, Trans. Br. Ceram. Soc. 56 (1957) 67.Google Scholar
  5. 5.
    R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, J. Catal. 26 (1972) 51.CrossRefGoogle Scholar
  6. 6.
    L. S. Lobo and D. L. Trimm, ibid. 29 (1973) 15.CrossRefGoogle Scholar
  7. 7.
    R. T. K. Baker and R. J. Waite, ibid. 37 (1975) 101.CrossRefGoogle Scholar
  8. 8.
    M. Hillert and N. Lange, Z. Kristallogr. 111 (1958) 24.CrossRefGoogle Scholar
  9. 9.
    J. Caluszka and M. H. Back, Carbon 22 (1984) 141.CrossRefGoogle Scholar
  10. 10.
    M. Audier and M. Coulon, ibid. 23 (1985) 317.CrossRefGoogle Scholar
  11. 11.
    S. Motojima, M. Kawaguchi, K. Nozaki and H. Iwanaga, Appl. Phys. Lett. 56 (1990) 321.CrossRefGoogle Scholar
  12. 12.
    Idem, Carbon 29 (1991) 379.CrossRefGoogle Scholar
  13. 13.
    M. Kawaguchi, K. Nozaki, S. Motojima and H. Iwanaga, J. Cryst. Growth 118 (1992) 309.CrossRefGoogle Scholar
  14. 14.
    S. Motojima, I. Hasegawa, M. Kawaguchi, K. Nozaki and H. Iwanaga, J. Chem. Vap. Deposit. 1 (1992) 136.Google Scholar
  15. 15.
    S. Motojima, I. Hasegawa, S. Kagiya, S. Asakura, M. Kawaguchi and H. Iwanga, J. Phys. IV C3 (1993) 599.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Motojima
    • 1
  • Y. Itoh
    • 1
  • S. Asakura
    • 1
  • H. Iwanaga
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringGifu UniversityGifuJapan
  2. 2.Faculty of Liberal ArtsNagasaki UniversityNagasakiJapan

Personalised recommendations