Journal of Materials Science

, Volume 29, Issue 15, pp 4119–4124 | Cite as

The formation of NaMg2Al15O25 in an α-Al2O3 matrix and its effect on the mechanical properties of alumina

  • Hai-Doo Kim
  • Im-Sik Lee
  • Suk-Won Kang
  • Jae-Woong Ko


An in-situ sintering reaction was designed to produce lath-like \‴-alumina in an α-alumina matrix in order to make alumina ceramics stronger and tougher. The reaction sequence to produce \‴-alumina (NaMg2Al15O25) requires the formation of \-alumina (NaAl11O17) and spinel (MgAl2O4) at around 1100 dgC followed by a solid-state reaction of these two phases to give \‴-alumina at elevated temperatures; this reaction is complete at around 1600 °C. The in-situ sintering reaction produces near-theoretically dense alumina ceramics in which lath-like \‴-aluminas are homogeneously distributed. The bending strength and fracture toughness increase to 620 MPa and 5 MPam1/2, respectively; these increases are thought to be due to the suppression of grain growth as well as the crack deflection and bridging associated with lath-like \‴-alumina.


Polymer Alumina Mechanical Property Elevated Temperature Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Homeny, W. L. Vaughn and M. K. Ferber, Amer. Ceram. Soc. Bull. 67 (1987) 333.Google Scholar
  2. 2.
    G. C. Wel and P. F. Becher, ibid. 64 (1985) 298.Google Scholar
  3. 3.
    T. N. Tiegs and P. F. Becher, ibid. 66 (1987) 339.Google Scholar
  4. 4.
    M. D. Sacks, H. W. Lee and O. E. Rojas, J. Amer. Ceram. Soc. 71 (1988) 370.CrossRefGoogle Scholar
  5. 5.
    T. N. Tiegs and P. F. Becher, in “Tailoring multiphase and composite ceramics” Vol. 20. (Plenum Press, New York, 1986) p. 639.CrossRefGoogle Scholar
  6. 6.
    K. B. Alexander, P. Angelini, and P. F. Becher, in “Ceramic transactions” Vol. 19. (The American Ceramic Society, Westerville, OH, 1991) p. 245.Google Scholar
  7. 7.
    P. Reijnen and H. D. Kim, Ceramic Forum International/Berichte der Deutschen Keramischen Gesellschaft 63 (1986) 272.Google Scholar
  8. 8.
    Idem, in Proceedings of the 8th Yugoslav—German Meeting on Materials Science and Development, May 1987, Ljobljana, Yugoslavia (1987) p. 91.Google Scholar
  9. 9.
    H. D. Kim and P. Reijnen, in Proceedings of the 10th Korean Symposium on Science and Technology, July 1987, Seoul, Korea (1987) p. 179.Google Scholar
  10. 10.
    A. K. Ray and E. C. Subbarao, Mater. Res. Bull. 10 (1975) 583.CrossRefGoogle Scholar
  11. 11.
    M. Bettman and L. L. Terner, Inorg. Chem. 10 (1971) 1442.CrossRefGoogle Scholar
  12. 12.
    P. Reijnen, Mater. Sci. Res. 13 (1979) 355.Google Scholar
  13. 13.
    B. R. Lawn and E. R. Fuller, J. Mater. Sci. 10 (1975) 2016.CrossRefGoogle Scholar
  14. 14.
    C. M. P. M. Saris and H. Verweij, Solid State Ionics 16 (1985) 185.CrossRefGoogle Scholar
  15. 15.
    S. J. Kiss, E. Kostic and S. B. Skovic, Sci. Ceram. 12 (1984) 195.Google Scholar
  16. 16.
    S. J. Bennison, N. P. Padture, J. L. Runyan and B. R. Lawn, Philos. Mag. Lett. 64 (1991) 191.CrossRefGoogle Scholar
  17. 17.
    N. P. Padture, S. J. Bennison and H. M. Chan, J. Am. Ceram. Soc. 76 (1993) 2312.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Hai-Doo Kim
    • 1
  • Im-Sik Lee
    • 1
  • Suk-Won Kang
    • 1
  • Jae-Woong Ko
    • 1
  1. 1.Ceramic Materials LaboratoryKorea Institute of Machinery and MetalsKyungnamKorea

Personalised recommendations