Advertisement

Journal of Materials Science

, Volume 29, Issue 15, pp 4086–4092 | Cite as

The evaluation of hot-working characteristics of cobalt-based implant alloys

  • Jong-Cheng Tsai
  • Jing-Bang Duh
  • Shan-Chang Chueh
Papers

Abstract

The hot-working characteristics of wrought Co-Ni-Cr-Mo implant alloy during ingot-to-billet conversion were evaluated using a Gleeble-2000A simulator. The hot tensile test at 700–1 320 °C was used to determine the optimum hot-working parameters at a strain rate equivalent to that of conventional press forging to ensure acceptable hot workability. Hot ductility and deformation resistance as a function of temperature can be clearly established. The fracture surfaces of the tensile specimens were examined to correlate them with the hot tensile ductility values at various temperatures. The poor ductility at temperatures above 1300 °C was attributed to the incipient melting of grain boundaries. The effect of temperature and strain rate on the flow-stress behaviour and microstructures were investigated by uniaxial compression testing in the temperature range 900–1200 °C and strain rate, ɛ, range of 0.01–10s−1. The strain-hardening and steady-state behaviour were described from the measured true stress-true strain curves.

Keywords

Ductility Uniaxial Compression Tensile Ductility Uniaxial Compression Testing Deformation Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Smith, U S Pat. 3356542 (1976).Google Scholar
  2. 2.
    J. S. Slaney, U S Pat. 3767385 (1973).Google Scholar
  3. 3.
    J. S. Slaney and R. A. Neibido, Mettalogr. 16 (1983) 137.CrossRefGoogle Scholar
  4. 4.
    F. C. Hagon, H. W. Antes, M. D. Boldg and J. S. Slaney, “Superalloy 1984” (Tms-Aime, Warrendale, PA, 1984) P. 623.Google Scholar
  5. 5.
    M. Lorenz, M. Semltitish, B. Panic, H. Weber and H. G. Willert, Eng. Med. 7 (1978) 241.CrossRefGoogle Scholar
  6. 6.
    R. T. Holt and W. Wallace, Mechanical Engineering Report, Ms-143 (National Research Council Canada, Ottawa, 1980).Google Scholar
  7. 7.
    T. C. Tisone, Acta Metall. 21 (1973) 229.CrossRefGoogle Scholar
  8. 8.
    J-P. Immarigeon, K. Rajan and W. Wallace, Metall. Trans. A 15 (1984) 339.CrossRefGoogle Scholar
  9. 9.
    G. L. Fitzsimons, Phd Thesis, University of Pittsburgh (1980).Google Scholar
  10. 10.
    R. P. Singh and R. D. Doherty, Metall. Trans. A 23 (1992) 307.CrossRefGoogle Scholar
  11. 11.
    M. J. Donachie Jr. in “Metal Handbook”, Desk Edition, edited by H. E. Boyer and T. L. Gall (Asm, Metals Park, OH, 1985) P. 16.5.Google Scholar
  12. 12.
    R. E. Bailey, Metal. Eng. Q. 5 (1975) 43.Google Scholar
  13. 13.
    A. H. Graham and J. L. Youngblood, Metall. Trans. 1 (1970) 423.CrossRefGoogle Scholar
  14. 14.
    M. Raghavan and B. J. Berkowitz, Scripta Metall. 14 (1980) 1009.CrossRefGoogle Scholar
  15. 15.
    M. Raghavan, B. J. Berkowitz and R. D. Kane, Metall. Trans. A 11 (1980) 203.CrossRefGoogle Scholar
  16. 16.
    J. M. Drapier, P. Viatour, D. Coutsouradis and L. Habraken, Cobalt 49 (1970) 171.Google Scholar
  17. 17.
    R. P. Singh and R. D. Doherty, Metall. Trans. A 23 (1992) 321.CrossRefGoogle Scholar
  18. 18.
    G. E. Dieter, “Workability Testing Techniques” (Asm, Metals Park, Oh, 1984) P. 73.Google Scholar
  19. 19.
    R. Pilkington, C. W. Willoughby and J. Barford, Metal Sci. J. 5 (1971) 1.CrossRefGoogle Scholar
  20. 20.
    B. Weiss, G. E. Grotke and R. Stickler, Weld. J. 10 (1970) 471.Google Scholar
  21. 21.
    H. G. Suzuki, H. Fujii, N. Takano and K. Kakn, Indust. Heat Vol. LV, 10 October (1988) 18.Google Scholar
  22. 22.
    J. C. Tasi and J. B. Duh, Scripta Metall. 27 (1992).Google Scholar
  23. 23.
    T. Nakamura, M. Ueki and S. Horie, J. Jpn Inst. Light Metals 25 (1975) 81.CrossRefGoogle Scholar
  24. 24.
    K. P. Rao and Y. V. R. K. Prasad, J. Mech. Working Technol. 13 (1986) 83.CrossRefGoogle Scholar
  25. 25.
    D. A. Hughes and W. D. Nix, Metall. Trans. A 19 (1988) 3013.CrossRefGoogle Scholar
  26. 26.
    M. Ueki, S. Horie and T. Nakamura, J. Mech. Working Technol. 11 (1985) 355.CrossRefGoogle Scholar
  27. 27.
    S. L. Semiatin, N. Frey, S. M. El-Soudani and J. D. Bryant, Metall. Trans. A 23 (1992) 1719.CrossRefGoogle Scholar
  28. 28.
    H. J. McQueen and J. J. Jonas, in “Plastic Deformation of Materials, Treatise On Materials Science and Technology”, Vol. 6, edited by R. J. Arsenault (Academic Press, New York, NY, 1975) P. 393.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Jong-Cheng Tsai
    • 1
  • Jing-Bang Duh
    • 1
  • Shan-Chang Chueh
    • 1
  1. 1.Materials Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations