Journal of Materials Science

, Volume 29, Issue 15, pp 4081–4085 | Cite as

Preparation of Y-TZP/AI2O3 whisker preform by an in situ method

  • K. Okada
  • Y. Kameshima
  • H. Mutoh
  • S. Hayashi


In situ growth of AI2O3 whiskers into the matrix of Y-TZP (yttria-doped tetragonal zirconia polycrystals) was examined in order to prepare Y-TZP/AI2O3 whisker preform for the composites. Various shapes of AI2O3 particles were grown by the reaction of AI2O3 and AIF3 powders with moist nitrogen or oxygen gases at high temperature. They showed a trend to change the particle shapes from massive → rhombohedron → whisker → platelet as the processing temperature was increased. These particles, however, grew only on the surface and not inside the pellets It was found necessary to introduce the carrier gas inside the pellets for particle growth to occur internally. AI2O3 whiskers can be synthesized inside the pellets by mixing with an organic space-forming agent having a relatively large particle size.


Oxygen Nitrogen Polymer Particle Size Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 577.CrossRefGoogle Scholar
  2. 2.
    S. Yamada, S. Kimura, E. Yasuda, Y. Tanabe and Y. Asami, J. Mater. Res. 3 (1988) 538.CrossRefGoogle Scholar
  3. 3.
    K. Okada, N. Otsuka, R. J. Brook and A. J. Moulson, J. Am. Ceram. Soc. 72 (1989) 2369.CrossRefGoogle Scholar
  4. 4.
    A. Miyamoto, Kogyo-Zairyo 38 (1990)Google Scholar
  5. 5.
    T. Mori, T. Arakawa and S. Higuchi, J. Ceram. Soc. Jpn 96 (1988) 744.CrossRefGoogle Scholar
  6. 6.
    W. S. Coblenz and D. Lewis III, J. Am. Ceram. Soc. 71 (1988) 1080.CrossRefGoogle Scholar
  7. 7.
    T. Sato, H. Fujishiro, T. Endo and M. Shimada, J. Mater. Sci. 22 (1987) 882.CrossRefGoogle Scholar
  8. 8.
    M. Kimura, T. Ogata, K. Nakamura and K. Kobayashi, J. Ceram. Soc. Jpn 96 (1988) 646.CrossRefGoogle Scholar
  9. 9.
    S. Rajendran, M. V. Swain and H. J. Rossel, J. Mater. Sci. 23 (1988) 1805.CrossRefGoogle Scholar
  10. 10.
    R. C. DeVries and G. W. Sears, J. Chem. Phys. 31 (1959) 1256.CrossRefGoogle Scholar
  11. 11.
    W. W. Webb and W. D. Forgang, J. Appl. Phys. 28 (1957) 1449.CrossRefGoogle Scholar
  12. 12.
    W. B. Campbell, Chem. Eng. Prog. 62 (1966) 68.Google Scholar
  13. 13.
    T. Hayashi, M. Mihoya, I. Yamai, H. Saito and S. Hirano, J. Mater. Sci. 22 (1987) 1305.CrossRefGoogle Scholar
  14. 14.
    S. Jagota and R. Raj, J. Crystal Growth 85 (1987) 527.CrossRefGoogle Scholar
  15. 15.
    A. P. Levitt, Mater. Res. Stand. 2 (1966) 64.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Okada
    • 1
  • Y. Kameshima
    • 1
  • H. Mutoh
    • 1
  • S. Hayashi
    • 1
  1. 1.Department of Inorganic MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations