Journal of Materials Science

, Volume 29, Issue 15, pp 4065–4069 | Cite as

Structure, stoichiometry and phase purity of strontium-doped lanthanum manganite powders

  • R. Millini
  • M. F. Gagliardi
  • G. Piro


Strontium-doped lanthanum manganite La1, xSrxMnO3 (LSM) is characterized by hexagonal-rhombohedral distorted perovskite-type structure, deriving from the ideal cubic symmetry through rotation of the [MnO6] octahedra around the ternary axis. The extent of distortion and unit cell volume depend on Sr content. The linear variation of the unit cell volume, observed in the compositional range 0.1 ⩽ x ⩽ 0.5, can be effectively used for determining the stoichiometry of LSM. A procedure for the quantitative analysis of segregated impurities (La2O3 and Mn3O4) based on X-ray powder diffraction analysis, has also been developed.


Polymer Quantitative Analysis Diffraction Analysis Mn3O4 Lanthanum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Grosz, P. Zegers, S. C. Singhal and O. Yamamoto (Eds), Proceedings of 2nd International Symposium on Solid Oxide Fuel Cells, Athens, July 1991 (Office For Official Publication of the European Communities, Luxembourg, 1991).Google Scholar
  2. 2.
    G. H. Jonker, Physica 22 (1956) 707.CrossRefGoogle Scholar
  3. 3.
    E. Bergs Mark, S. Furuseth, O. Dyrlie, T. Norby and P. Kofstad, in Proceedings of 2nd International Symposium on Solid Oxide Fuel Cells, edited by F. Grosz, P. Zegers, S. C. Singhal and O. Yamamoto (Office For Official Publications of the European Community, Luxembourg, 1991) P. 473.Google Scholar
  4. 4.
    O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, Solid State Ionics 22 (1987) 241.CrossRefGoogle Scholar
  5. 5.
    P. Courty, B. Delmon, C. Marcilly and A. Sugier, Belgian Patent 735476 (1969).Google Scholar
  6. 6.
    H. M. Rietveld, Acta Crystallogr. 22 (1967) 151.CrossRefGoogle Scholar
  7. 7.
    Idem, J. Appl. Cryst. 2 (1969) 65.CrossRefGoogle Scholar
  8. 8.
    J. Schneider, in Proceedings of International Workshop of the Rietveld Method, Petten (The Netherlands), 1989, Abstract B17.Google Scholar
  9. 9.
    B. D. Wiles and R. A. Young, J. Appl. Cryst. 14 (1981) 149.CrossRefGoogle Scholar
  10. 10.
    G. Caglioti, A. Paoletti and F. P. Ricci, Nucl. Instrum. 3 (1958) 223.CrossRefGoogle Scholar
  11. 11.
    R. J. Hill and C. J. Howard, J. Appl. Cryst. Allogr. 20 (1987) 467.CrossRefGoogle Scholar
  12. 12.
    R. J. Hill, Powder Diffrcn 6 (1991) 74.CrossRefGoogle Scholar
  13. 13.
    B. Derighetti, J. E. Drumheller, F. Laves, K. A. Müller and F. Waldner, Acta Crystallogr. 18 (1965) 557.CrossRefGoogle Scholar
  14. 14.
    O. Müller and R. Roy, “The Major Ternary Structural Families” (Springer, Berlin, 1974) P. 184.CrossRefGoogle Scholar
  15. 15.
    A. Hammouche, E. Siebert and A. Hammou, Mater. Res. Bull. 24 (1989) 367.CrossRefGoogle Scholar
  16. 16.
    J. M. Moreau, C. Michel, R. Gerson and W. J. James, Acta Crystallogr. B26 (1970) 1425.CrossRefGoogle Scholar
  17. 17.
    A. J. Jacobson, B. C. Tofield and B. E. F. Fender, ibid. B28 (1972) 956.CrossRefGoogle Scholar
  18. 18.
    R. D. Shannon, ibid. A32 (1976) 751.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. Millini
    • 1
  • M. F. Gagliardi
    • 1
  • G. Piro
    • 1
  1. 1.Eniricerche S.p.A.San Donato Milanese (MI)Italy

Personalised recommendations