Advertisement

Journal of Materials Science

, Volume 29, Issue 15, pp 4056–4060 | Cite as

NiAl formation by annealing of infiltrated aluminium-nickel precursors

  • D. C. Dunand
Papers

Abstract

Samples fabricated by pressure-infiltration of nickel powders with molten aluminium were heat treated at 1200 °C under vacuum or argon isostatic pressure. Reaction and diffusion in the asinfiltrated samples, which contained nickel, aluminium and varying amounts of Ni2Al3 and Al3Ni, resulted in the formation of NiAl as a principal phase with nickel and Ni3Al as minor phases. All samples exhibited macroporosity due to the formation of an interconnected transient liquid phase during heat treatment. Vacuum-annealed samples also showed extensive Kirkendall porosity in the nickel phase, which was, however, pore-free in hot isostatically pressed samples due to compaction during reaction. Concentration profiles of aluminium in these nickel regions were measured and are in good agreement with predicted values.

Keywords

Porosity Nickel Heat Treatment Compaction Concentration Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Dunand, Mater. Manuf. Proc., in print.Google Scholar
  2. 2.
    D. M. Sims, A. Bose and R. M. German, Prog. Powder Metall. 43 (1987) 575.Google Scholar
  3. 3.
    Z. A. Munir, Ceram. Butt. 67 (1988) 342.Google Scholar
  4. 4.
    A. Bose, B. H. Rabin and R. M. German, Powder Metall. Int. 20 (1988) 25.Google Scholar
  5. 5.
    D. L. Anton, in “High Temperature/High Performance Composites”, edited by F. D. Lemkey, S. G. Fishman, A. G. Evans and J. R. Strife (MRS, Pittsburgh, PA 1988) pp. 57–64.Google Scholar
  6. 6.
    N. S. Stoloff and D. E. Alman, MRS Butt. 15 (1990) 47.CrossRefGoogle Scholar
  7. 7.
    R. M. German, in “1990 Advances in Powder Metallurgy”, edited by E. R. Andreotti and P. J. McGeehan (American Powder Metallurgy Institute, Princeton, NJ, 1990) pp. 115–32.Google Scholar
  8. 8.
    S. D. Dunmead, Z. A. Munir, J. B. Holt and D. D. Kingman, J. Mater. Sci. 26 (1991) 2410.CrossRefGoogle Scholar
  9. 9.
    D. E. Alman and N. S. Stoloff, Int. J. Powder Metall. 27 (1991) 29.Google Scholar
  10. 10.
    C. Nishimura and C. T. Liu, Scripta Metall. Mater. 26 (1992) 381.CrossRefGoogle Scholar
  11. 11.
    D. C. Dunand, J. L. Sommer and A. Mortensen, Metall. Trans. 24A (1993) 2161–70.CrossRefGoogle Scholar
  12. 12.
    O. Arkens, L. Delaey, J. D. Tavernier, B. Huybrechts, L. Buekenhout and J. C. Libouton, in “High-Temperature Ordered Intermetallic Alloys III”, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, PA, 1989) pp. 493–8.Google Scholar
  13. 13.
    A. J. Hickl and R. W. Heckel, Metall. Trans. 6A (1975) 431.CrossRefGoogle Scholar
  14. 14.
    T. Yamamoto, T. Takashima and K. Nishida, J. Jpn Inst. Metals 44 (1980) 294.CrossRefGoogle Scholar
  15. 15.
    E. A. Brandes (Ed.) “Smithells Metal Reference Handbook” (Butterworth, London, UK, 1983).Google Scholar
  16. 16.
    M. Hansen and K. Anderko, in “Constitution of Binary Alloys” (McGraw-Hill, New York, NY, 1958) pp. 118–21.Google Scholar
  17. 17.
    J. I. Goldstein, M. R. Notis and A. D. Romig, in “ASM Handbook Vol.10, Materials Characterization”, edited by W. E. Whan (ASM, Metals Park, OH, 1986) pp. 476–8.Google Scholar
  18. 18.
    J. Crank, in “The Mathematics of Diffusion”, 2nd Edn (Oxford Science, Oxford, UK, 1975) pp. 116–17.Google Scholar
  19. 19.
    M. M. P. Janssen and G. D. Rieck, Trans. AIME 239 (1967) 1372.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • D. C. Dunand
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations