Journal of Materials Science

, Volume 29, Issue 15, pp 4043–4050 | Cite as

Effective medium theory and the thermal conductivity of plasma-sprayed ceramic coatings

  • A. Bjorneklett
  • L. Haukeland
  • J. Wigren
  • H. Kristiansen


The thermal diffusivity of plasma-sprayed zirconium oxide-7% yttrium oxide and aluminium oxide-3% titanium oxide ceramic coatings was measured by using a periodic heat-flow method. Samples were prepared with different porosities thus allowing the thermal diffusivity as function of porosity to be determined. The samples were also impregnated with silicone oil so that the effect on the thermal diffusivity by replacing air with silicone oil in the pores could be determined. The experimental results were compared with effective medium theories representing three different microstructures: (1) a continuous ceramic matrix with dispersed pores, (2) a continuous ceramic matrix with continuously interconnected pores, (3) dispersed ceramic particles loosely bonded together. The latter two microstructures gave the best agreement between the experimental data and the theory.


Oxide Polymer Microstructure Titanium Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Zaat, Ann. Rev. Mater. Sci. 13 (1983) 9.CrossRefGoogle Scholar
  2. 2.
    R. H. Palmer, in “Proceedings of the 13th International Thermal Spraying Conference”, edited by C. C. Berndt (ASM, Materials Park, Ohio, 1992) p. 825.Google Scholar
  3. 3.
    A. Bjorneklett, L. M. Nilsen, H. Kristiansen and T. Storfossene, ibid.”, p. 829.Google Scholar
  4. 4.
    T. Peterman, ibid.”, p. 309.Google Scholar
  5. 5.
    R. Mcpherson, Thin Solid Films 112 (1984) 89.CrossRefGoogle Scholar
  6. 6.
    J. Gerard-Hirne and Y. Lazennec, Trans. Int. Ceram. Congr. 10 (1967) 413.Google Scholar
  7. 7.
    H. C. Fiedler, Mater. Res. Soc. Symp. Proc. 30 (1984) 173.CrossRefGoogle Scholar
  8. 8.
    R. Mcpherson and B. V. Shafer, Thin Solid Films 97 (1982) 201.CrossRefGoogle Scholar
  9. 9.
    J. C. Maxwell, “A Treatise on Electricity and Magnetism”, 3rd Edn (Dover, New York, 1954) Ch. 9.Google Scholar
  10. 10.
    J. Garnet, Phil. Trans. R. Soc. Lond. 203 (1904) 385.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid., 205 (1906) 237.CrossRefGoogle Scholar
  12. 12.
    D. Bruggeman, Ann. Phys. 24 (1935) 636.CrossRefGoogle Scholar
  13. 13.
    D. S. McLachlan, J. Phys. C Solid State Phys. 20 (1987) 865.CrossRefGoogle Scholar
  14. 14.
    R. E. Newham, D. P. Skinner and L. E. Cross, Mater. Res. Bull. 13 (1978) 525.CrossRefGoogle Scholar
  15. 15.
    A. Bjorneklett, L. Halbo and H. Kristiansen, Int. J. Adhesion Adhesives 12 (1992) 99.CrossRefGoogle Scholar
  16. 16.
    P. N. Sen, C. Scala and M. H. Cohen, Geophys. 46 (1981) 781.CrossRefGoogle Scholar
  17. 17.
    A. J. Ångström, Ann. Phys. Chem. 64 (1861) 33.Google Scholar
  18. 18.
    B. Sundqvist, Int. J. Thermophys. 12 (1991) 191.CrossRefGoogle Scholar
  19. 19.
    D. R. Lide, “CRC Handbook of Chemistry and Physics”, 73rd Edn (CRC Boca Raton, Fl, 1992).Google Scholar
  20. 20.
    L. Pawlowski, C. Martin and P. Fauchais, in “Proceedings of the 10th International Thermal Spraying Conference” (Deutscher Verlag Fur Schweisstechnik (DVS) GmbH, Dusseldorf, 1983) p. 31.Google Scholar
  21. 21.
    H. Nakahira, K. Tani, K. Miyajima and Y. Harada, in “Proceedings of the 13th Int. Thermal Spraying Conference”, edited by C. C. Berndt (ASM, Materials Park, Ohio, 1992) p. 1011.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Bjorneklett
    • 1
    • 2
  • L. Haukeland
    • 1
    • 2
  • J. Wigren
    • 1
    • 2
    • 3
  • H. Kristiansen
    • 1
    • 2
  1. 1.SINTEF SIBlindern
  2. 2.Department of PhysicsUniversity of OsloBlindernNorway
  3. 3.Aerospace DivisionVolvo Flygmotor ABTrollhättanSweden

Personalised recommendations