Journal of Materials Science

, Volume 29, Issue 15, pp 3979–3983 | Cite as

Electrical and optical behaviour of vapour-grown SnS2 crystals

  • S. K. Arora
  • D. H. Patel
  • M. K. Agarwal


Single-crystal growth of tin disulphide using chemical vapour (iodine) transport has been reported. The electrical resistivity, Hall mobility and optical absorption of the vapour-grown crystals have been investigated. The grown crystals show three different regions characterized by different operating conduction mechanisms. The electrical behaviour of the physical vapour-grown crystals in the 77–300 K temperature range reveals that the material can be obtained as a classical or a degenerate semiconductor depending upon the zone temperature interval. The optical absorption spectra in the 450–800 nm wavelength range has been analysed thoroughly to obtain direct and indirect allowed and forbidden transitions. An indirect transition assisted by phonon energy 0.04 eV has been identified in these crystals.


Iodine Electrical Resistivity Wavelength Range Optical Absorption Chemical Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Lee, G. Said, R. Davis and T. H. Lim, J. Phys. Chem. Solids 30 (1969) 2719.CrossRefGoogle Scholar
  2. 2.
    G. Said and P. A. Lee, Phys. Status Solidi (a) 15 (1973) 99.CrossRefGoogle Scholar
  3. 3.
    J. George and C. K. Valsala Kumari, J. Cryst. Growth 63 (1983) 233.CrossRefGoogle Scholar
  4. 4.
    V. P. Gupta, P. Agarwal, A. Gupta and V. K. Srivastava, J. Phys. Chem. Solids 43 (1982) 291.CrossRefGoogle Scholar
  5. 5.
    D. L. Greenway and R. Nitsche, ibid., 26 (1965) 1445.CrossRefGoogle Scholar
  6. 6.
    G. Domingo, R. S. Itoga and C. R. Kannewurk, Phys. Rev. 193 (1966) 536.CrossRefGoogle Scholar
  7. 7.
    M. J. Powell, J. Phys. C. Solid State Phys. 10 (1977) 2967.CrossRefGoogle Scholar
  8. 8.
    T. Shibata, N. Kambe, Y. Muranushi, T. Miura and T. Kishi, J. Phys. D. Appl. Phys. 23 (1990) 719.CrossRefGoogle Scholar
  9. 9.
    A. Aruchamy and M. K. Agarwal, in “Photoelectrochemistry and Photovoltaics of Layered semiconductors”, edited by A. Aruchamy (Kluwer, Dordrecht, USA, 1992) pp. 319CrossRefGoogle Scholar
  10. 10.
    S. K. Arora, D. H. Patel and M. K. Agarwal, J. Cryst. Growth 131 (1993) 268–327CrossRefGoogle Scholar
  11. 11.
    K. Kourtakis, J. Dicarlo, R. Kershaw, K. Dwight and A. Wold, J. Solid State Chem. 76 (1988) 186.CrossRefGoogle Scholar
  12. 12.
    Y. Ishizawa and Y. Fujiki, J. Phys. Soc. Jpn 35 (1973) 1259.CrossRefGoogle Scholar
  13. 13.
    T. Shibata, Y. Muranushi, T. Miura and T. Kishi, J. Phys. Chem. Solids 52 (1991) 551.CrossRefGoogle Scholar
  14. 14.
    B. Fotouhi and A. Katty, Electrochim. Acta 32 (1987) 1149.CrossRefGoogle Scholar
  15. 15.
    J. Bardeen, F. J. Blatt and L. H. Hall, in Proceedings of Photoconductivity Conference, Atlantic City, NJ (Wiley, New York, 1956) p. 146.Google Scholar
  16. 16.
    S. K. Arora, T. Mathew and N. M. Batra, J. Phys. Chem. Solids 50 (1989) 665.CrossRefGoogle Scholar
  17. 17.
    H. C. Gupta, G. Sood, M. M. Sinha and B. B. Tripathi, Phys. Rev. B. 37 (1988) 14.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. K. Arora
    • 1
  • D. H. Patel
    • 1
  • M. K. Agarwal
    • 1
  1. 1.Department of PhysicsSardar Patel UniversityGujaratIndia

Personalised recommendations