Advertisement

Journal of Materials Science

, Volume 29, Issue 15, pp 3949–3954 | Cite as

Effect of grain morphology and grain size on the mechanical properties of Al2O3 ceramics

  • Takashi Koyama
  • Akio Nishiyama
  • Koichi Niihara
Papers

Abstract

Bending strength, fracture toughness, fracture energy and crack extension resistance were evaluated for Al2O3 ceramics with equi-axed and platelet grains. Bending strength was proportional to grain size−1/2, but flaws with a size of 10 μm controlled the strength when the microstructure was finer than 10 μm. Fracture toughness, measured by the single etched precracked beam (SERB) method, was proportional to fracture energy1/2, and increased with the grain size of Al2O3 ceramics with equi-axed and platelet grains. However, the toughness of platelet grain ceramics was higher than the ceramics with equi-axed grains, and increased up to 6.6 MPam1/2 with grain size. Therefore, it is thought that fracture toughness not only depends on grain size, but also on grain morphology; equations were derived to account for this phenomenon.

Keywords

Polymer Grain Size Microstructure Mechanical Property Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Steinbrench, R. Knehans and W. Schaarwächter, J. Mater. Sci. 18 (1983) 265.CrossRefGoogle Scholar
  2. 2.
    M. V. Swain, J. Mater. Sci. Lett. 5 (1986) 1313.CrossRefGoogle Scholar
  3. 3.
    T. Nishida and I. Kameyama, J. Ceram. Soc. Jpn 100 (1992) 276.CrossRefGoogle Scholar
  4. 4.
    G. Vekinis, M. F. Ashby and P. W. R. Beaumont, Acta Metall. Mater. 38 (1990) 1151.CrossRefGoogle Scholar
  5. 5.
    J. Rödel, J. F. Kelly and B. R. Lawn, J. Amer. Ceram. Soc. 73 (1990) 3313.CrossRefGoogle Scholar
  6. 6.
    P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y-M. Mai and B. J. Hockey, ibid. 70 (1987) 279.CrossRefGoogle Scholar
  7. 7.
    R. F. Cook, Acta Metall. Mater. 38 (1990) 1083.CrossRefGoogle Scholar
  8. 8.
    T. Kawashima, H. Okamoto H. Yamamoto and A. Kitamura, J. Ceram. Soc. Jpn 99 (1991) 320.CrossRefGoogle Scholar
  9. 9.
    P. F. Becher, C-H. Hsueh, P. Angelini and T. N. Tiegs, J. Amer. Ceram. Soc. 71 (1988) 1050.CrossRefGoogle Scholar
  10. 10.
    H. Song and R. L. Coble, ibid. 73 (1990) 2077.CrossRefGoogle Scholar
  11. 11.
    T. Koyama, A. Nishiyama and K. Niihara, J. Mater. Sci. 28 (1993) 5953.CrossRefGoogle Scholar
  12. 12.
    R. L. Fullman, Trans. AIME 197 (1953) 447.Google Scholar
  13. 13.
    T. Nose and T. Fujii, J. Amer. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  14. 14.
    J. Nakayama, ibid. 48 (1965) 583.CrossRefGoogle Scholar
  15. 15.
    J. I. Bluhm, Eng. Fract. Mech. 7 (1975) 593.CrossRefGoogle Scholar
  16. 16.
    P. Chantikul, S. J. Bennison and E. R. Lawn, J. Amer. Ceram. Soc. 73 (1990) 2419.CrossRefGoogle Scholar
  17. 17.
    H. Mizuta, K. Oda, Y. Shibasaki, M. Maeda, M. Machida and K. Ohshima, ibid. 75 (1992) 469.CrossRefGoogle Scholar
  18. 18.
    N. P. Padture and H. M. Chan, ibid. 75 (1992) 1870.CrossRefGoogle Scholar
  19. 19.
    A. Reichl and R. W. Steinbrech, ibid. 71 (1988) C299.CrossRefGoogle Scholar
  20. 20.
    X-Z. Hu, E. H. Lutz and M. V. Swain, ibid. 74 (1991) 1828.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Takashi Koyama
    • 1
  • Akio Nishiyama
    • 1
  • Koichi Niihara
    • 2
  1. 1.Central Research InstituteMitsubishi Materials CorporationSaitamaJapan
  2. 2.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityOsakaJapan

Personalised recommendations