Journal of Materials Science

, Volume 29, Issue 15, pp 3926–3940 | Cite as

In situ solid-state NMR studies of Ca3SiO5: hydration at room temperature and at elevated temperatures using 29Si enrichment

  • A. R. Brough
  • C. M. Dobson
  • I. G. Richardson
  • G. W. Groves


29Si isotopic enrichment was used for acquisition of multiple 29Si magic-angle spinning (MAS) and cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra, in situ in an NMR probe, from a single sample of hydrating Ca3SiO5 (C3S). Data with excellent signal-to-noise ratios were obtained at 20, 50 and 75 °C, with minimal use of spectrometer time, and without the need for the quenching of multiple samples. Spectral line widths and polymer-chain lengths derived from the spectra had no detectable differences from experiments in which the quenching was carried out with propan-2-ol. Furthermore, the effects of the MAS technique on the hydration reaction appeared to be minimal. At 20 °C, the bulk hydrate initially produced was dimeric; at later stages of the reaction, polymerization occurred. Arrhenius energies of 35 and 100 kJ mol−1, respectively, were calculated for these two reactions. The cross-polarization (CP) spectra acquired throughout the hydration showed that at 20 °C, 2% of the hydrated monomeric Q o (H) species persisted from after the induction period through to the late stages of the hydration reaction; this indicates that this species is unlikely to result from surface hydroxylation of C3S; an upfield shift of this species occurred with increasing hydration, indicating a possible change of environment for the silicate species. The amount of Q o (H) produced was found to increase at higher temperatures. Potential mechanisms for polymerization were assessed and a model in which dimeric-silicate units are linked together by insertion of monomers (dimer → pentamer → octomer) was found to give the best fit to the observed data; these results support a dreierketten model for the structure of the hydrate.


Nuclear Magnetic Resonance Induction Period Surface Hydroxylation Isotopic Enrichment Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. G. Richardson and G. W. Groves, Cem. Concr. Res. 22 (1992) 1001–1010.CrossRefGoogle Scholar
  2. 2.
    H. F. W. Taylor, J. Amer. Ceram. Soc. 69 (1986) 464–467.CrossRefGoogle Scholar
  3. 3.
    F. P. Glasser, E. E. Lachowski and D. E. Macphee, ibid. 70 (1987) 481–485.CrossRefGoogle Scholar
  4. 4.
    A. M. Dunster, J. R. Parsonage and E. A. Vidgeon, Mater. Sci. Technol. 5 (1989) 708–713.CrossRefGoogle Scholar
  5. 5.
    J. Hirljac, Z.-Q. Wu and J. F. Young, Cem. Concr. Res. 13 (1983) 877–886.CrossRefGoogle Scholar
  6. 6.
    L. S. Dent-Glasser, E. E. Lachowski, M. Y. Qureshi, H. P. Calhoun, D. J. Embree, W. D. Jamieson and C. R. Masson, ibid. 11 (1981) 775–780.CrossRefGoogle Scholar
  7. 7.
    E. E. Lachowski, ibid. 9 (1979) 337–342.CrossRefGoogle Scholar
  8. 8.
    A. Dureković, ibid. 18 (1988) 532–538.CrossRefGoogle Scholar
  9. 9.
    I. G. Richardson and G. W. Groves, J. Mater. Sci. 28 (1993) 265–277.CrossRefGoogle Scholar
  10. 10.
    G. W. Groves, P. J. Le Sueur and W. Sinclair, J. Amer. Ceram. Soc. 69 (1986) 353–356.CrossRefGoogle Scholar
  11. 11.
    A.-R. Grimmer and F. Von Lampe, Z. Chem. 23 (1983) 343–344.CrossRefGoogle Scholar
  12. 12.
    E. Lippmaa, M. Mägi, A. Samoson, G. Englehardt and A.-R. Grimmer, J. Amer. Chem. Soc. 102 (1980) 4889–4893.CrossRefGoogle Scholar
  13. 13.
    E. Lippmaa, M. Mägi and M. Tarmak, Cem. and Concr. Res. 12 (1982) 597–602.CrossRefGoogle Scholar
  14. 14.
    N. J. Clayden, C. M. Dobson, C. J. Hayes and S. A. Rodger, J. Chem. Soc., Chem. Comm. 21 (1984) 1396–1397.CrossRefGoogle Scholar
  15. 15.
    N. J. Clayden, C. M. Dobson, G. W. Groves, C. J. Hayes and S. A. Rodger, Proc. B Ceram. Soc. 35 (1984) 55–64.Google Scholar
  16. 16.
    Y. Tong, H. Du and L. Fei, Cem. Concr. Res. 21 (1991) 355–358.CrossRefGoogle Scholar
  17. 17.
    S. A. Rodger, D. Phil. thesis, University of Oxford, Oxford 1986.Google Scholar
  18. 18.
    H. F. W. Taylor and D. E. Newbury, Cem. Concr. Res. 14 (1984) 93–98.CrossRefGoogle Scholar
  19. 19.
    D. E. Mcphee, E. E. Lachowski and F. P. Glasser, Adv. Cem. Res. 1 (1988) 131–137.CrossRefGoogle Scholar
  20. 20.
    S. Masse, H. Zanni, J. Lecourtier, J. C. Roussel and A. Rivereau, Cem. Concr. Res. 23 (1993) 1169–1177.CrossRefGoogle Scholar
  21. 21.
    S. U. Al-Dulaijan, G. Parry-Jones, A. J. Altayyib and A. I. Al-Mana, J. Amer. Ceram. Soc. 71 (1990) 736–739.CrossRefGoogle Scholar
  22. 22.
    G. Parry-Jones, A. J. Al-Tayyiband A. I. Al-Mana, Cem. Concr. Res. 18 (1988) 229–234.CrossRefGoogle Scholar
  23. 23.
    P. Fierens, Y. Kamuema and J. Tirlocq, ibid. 12 (1982) 191–198.CrossRefGoogle Scholar
  24. 24.
    A. M. Urzhenko and A. V. Usherov-Marshak, Inorg. Mater. 10 (1974) 761–764.Google Scholar
  25. 25.
    J. D. Hancock and J. H. Sharp, J. Amer. Ceram. Soc. 55 (1972) 74–77.CrossRefGoogle Scholar
  26. 26.
    S. R. Hartmann and E. L. Hahn, Phys. Rev. 128 (1962) 2042–2053.CrossRefGoogle Scholar
  27. 27.
    C. S. Yannoni, Acc. Chem. Res. 15 (1982) 201–208.CrossRefGoogle Scholar
  28. 28.
    S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, J. Amer. Ceram. Soc. 71 (1988) 91–96.CrossRefGoogle Scholar
  29. 29.
    R. Rassem, H. Zanni-Theveneau, C. Vernet, D. Heidemmann, A.-R. Grimmer, P. Barret, A. Nonat, D. Bertrandie, and D. Damidot, Proceedings of the 1st International Workshop on Hydration and Setting, Dijon, France, 3–5 July, 1991.Google Scholar
  30. 30.
    J. Rocha and J. Klinowski, J. Magn. Reson. 90 (1990) 567–568.Google Scholar
  31. 31.
    C. P. Grey; A. K. Cheetham and C. M. Dobson, ibid. 101 (1993) 299–306.CrossRefGoogle Scholar
  32. 32.
    Wavemetrics, IGOR, Lake Oswego, Oregon, 97035, USA, (1992).Google Scholar
  33. 33.
    N. M. Szeverenyi, M. J. Sullivan and G. E. Maciel, J. Magn. Reson. 47 (1982) 462–475.Google Scholar
  34. 34.
    G. M. M. Bell, J. Benstead, F. P. Glasser, E. E. Lachowski, D. R. Roberts and M. J. Taylor, Adv. Cem. Res 3 (1990) 23–37.CrossRefGoogle Scholar
  35. 35.
    G. Parry-Jones, A. J. Al-Tayyib, S. U. Al-Dulaijan and A. I. Al-Mana, Cem. Concr. Res. 19 (1989) 228–234.CrossRefGoogle Scholar
  36. 36.
    C. A. Fyfe, H. Geis and Y. Feng, J. Amer. Chem. Soc. 111 (1989) 7702–7707.CrossRefGoogle Scholar
  37. 37.
    X. Cong and R. J. Kirkpatrick, Cem. Concr. Res. 23 (1993) 1065–1077.CrossRefGoogle Scholar
  38. 38.
    S. A. Rodger, G. W. Groves, N. J. Clayden and C. M. Dobson, Mater. Res. Symp. Proc. 85 (1987) 13–20.CrossRefGoogle Scholar
  39. 39.
    I. G. Richardson, A. R. Brough, R. Brydson, G. W. Groves and C. M. Dobson, J. Amer. Ceram. Soc. 76 (1993) 2285–2288.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. R. Brough
    • 1
  • C. M. Dobson
    • 1
  • I. G. Richardson
    • 2
  • G. W. Groves
    • 2
  1. 1.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations