Advertisement

Journal of Materials Science

, Volume 29, Issue 15, pp 3906–3912 | Cite as

The influence of temperature on the mechanical and fracture properties of a 20 vol% ceramic particulate-reinforced aluminium matrix composite

  • Mohammed Jafar Hadianfard
  • Joseph Healy
  • Yiu-Wing Mai
Papers

Abstract

The influence of test temperature on the mechanical and fracture properties of a 20 vol% alumina particulate-reinforced 6061-aluminium matrix composite, in the peak-aged condition, was investigated in the temperature range 25–180 °C. Strength and stiffness were found to decrease but elongation to failure increased with increasing test temperature. However, the fracture toughness was relatively constant over this temperature range. The failure mechanism, the reaction zone around reinforcing particles, the number of debonded particles and void sizes were all significantly influenced by temperature. The role of the matrix/particle interface in the fracture process was also investigated.

Keywords

Polymer Alumina Fracture Toughness Fracture Property Failure Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. G. Nieh, K. Xia and T. G. Landon, J. Eng. Mater. Technol. 110 (1988) 77–82.CrossRefGoogle Scholar
  2. 2.
    S. F. Corbin and D. S. Wilkinson, in “Proceedings of Ceramic and Metal Matrix Composites” edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (TMS, Warrendale, PA, 1990) pp. 401–11.Google Scholar
  3. 3.
    B. P. Somerday, Y. Leng, F. E. Wawner and R. P. Gangloff, “Advanced Metal-Matrix Composites for Elevated Temperature” (ASM, Metal Park, OH, 1991) pp. 167–82.Google Scholar
  4. 4.
    A. F. Whitehouse and T. W. Clyne, in “Proceedings of ICCM/9”, Vol. I, edited by A. Miravete, University of Zaragoza (Woodhead Publishing, Madrid, 1993) pp. 393–400.Google Scholar
  5. 5.
    E. Fitzer, Pure. Appl. Chem. 60 (1988) 287.CrossRefGoogle Scholar
  6. 6.
    W. H. Kim, M. J. Koczak, and A. Lawley, in “Proceedings of the 2nd International Conference on Composite Materials, Toronto, Ontario (TMS-AIME, Warrendale, PA, 1987) pp. 487–505.Google Scholar
  7. 7.
    M. J. Hadianfard, J. C. Healy and Y. W. Mai, J. Mater. Sci. 28 (1993) 6217.CrossRefGoogle Scholar
  8. 8.
    J. Drennan, K. Xia and M. J. Couper, in “Proceedings of Advance Composites '93”, edited T. Chandra and A. K. Dhingra, Wollongong, Australia, TMS, (1993) pp. 1015–19.Google Scholar
  9. 9.
    N. Han, G. Pollard and R. Stevens, Mater. Sci. Technol. 8 (1992) 184.CrossRefGoogle Scholar
  10. 10.
    J. A. Isaacs and A. Mortensen, Metall. Trans. 23 (1992) 1207.CrossRefGoogle Scholar
  11. 11.
    S. R. Nutt and A. Needleman, Scripta Metall. 21 (1987) 705.CrossRefGoogle Scholar
  12. 12.
    T. Christman, A. Needleman, S. R. Nutt and S. Suresh, Mater. Sci. Eng. A107 (1989) 49–61.CrossRefGoogle Scholar
  13. 13.
    C. G. Levi, G. J. Abbaschian and R. Mehrabian, Metall. Trans. 9A (1978) 697.CrossRefGoogle Scholar
  14. 14.
    A. D. Mcleod and C. M. Gabryel, ibid. 23A (1992) 1279.CrossRefGoogle Scholar
  15. 15.
    I. Dutta and D. L. Bourell, Acta Metall. Mater. 38 (1990) 2041.CrossRefGoogle Scholar
  16. 16.
    K. Suganuma, T. Okamoto, T. Hayami, Y. Oku and N. Suzuki, J. Mater. Sci. 23 (1988) 1317.CrossRefGoogle Scholar
  17. 17.
    H. Watanabe and T. Saitoh, Keikinzoku 39 (1989) 262.Google Scholar
  18. 18.
    C. Atonione, F. Marrino, G. Riontno, S. Abis and E. Dirusso, Mater. Chem. Phys. 20 (1988) 13.CrossRefGoogle Scholar
  19. 19.
    C. Badini, F. Marino and A. Tomasi, J. Mater. Sci. 26 (1991) 6279.CrossRefGoogle Scholar
  20. 20.
    M. J. Hadianfard, Y. W. Mai and J. C. Healy, ibid. 28 (1993) 3665.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Mohammed Jafar Hadianfard
    • 1
  • Joseph Healy
    • 1
  • Yiu-Wing Mai
    • 1
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic EngineeringUniversity of SydneyNew South WalesAustralia

Personalised recommendations