Advertisement

Journal of Materials Science

, Volume 29, Issue 15, pp 3897–3905 | Cite as

Texturing and texture-induced intergranular critical state anisotropy of superconducting (Bi, Pb)2Sr2Ca2Cu3Ox ceramics

  • Wai Lo
  • D. N. Zheng
  • B. A. Glowacki
  • A. M. Campbell
Papers

Abstract

Different techniques of texturing superconducting (Bi,Pb)2Sr2Ca2Cu3Ox ceramics, including magnetic alignment, cold-die pressing, unidirectional hot pressing and a combination of these techniques, have been systematically examined with respect to the final microstructures and superconducting properties of the ceramics. The intergranular critical state of the textured ceramics was found to be anisotropic, due to a high degree of grain alignment in these materials. All the intergranular critical states in these materials could be described by the Bean model, although the temperature dependence of the average intergranular pinning force densities were different. The microstructures of the samples were characterized using scanning electron microscopy and bulk density measurement. The critical states of the textured materials were studied using a.c. magnetic susceptometry.

Keywords

Polymer Microstructure Electron Microscopy Scanning Electron Microscopy Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wai Lo and B. A. Glowacki, in “Layered Superconductors: Fabrication, Properties and Applications”, MRS Symposium Proceedings, Vol. 275, edited by D. T. Shaw, T. R. Schneider, C. C. Tsuei and Y. Shiohara (MRS, Pittsburg, PA, 1992) p. 729.Google Scholar
  2. 2.
    Idem, in “Advances in Cryogenic Engineering (Materials)”, Vol. 38, edited by F. R. Grichett and R. P. Reed (Plenum Press, New York, 1992) p. 1065.Google Scholar
  3. 3.
    P. Haldar, J. G. Hoehn Jr, J. A. Rice and L. R. Motowidlo, Appl. Phys. Lett. 60 (1992) 495.CrossRefGoogle Scholar
  4. 4.
    H. Ikeda, R. Yoshizaki, K. Yoshikawa and N. Tomita, Jpn J. Appl. Phys. 29 (1990) L430.CrossRefGoogle Scholar
  5. 5.
    N. Murayama, E. Sudo, M. Awano, K. Kani and Y. Torri, ibid. 27 (1988) L1856.CrossRefGoogle Scholar
  6. 6.
    T. Uzumaki, K. Yamanka, N. Kamehara and K. Niwa, Appl. Phys. Lett. 54 (1989) 2253.CrossRefGoogle Scholar
  7. 7.
    T. Asano, Y. Tanaka, M. Fukutomi, K. Jikihara and H. Maeda, Jpn J. Appl. Phys. 4 (1989) 2253.Google Scholar
  8. 8.
    J. E. Ekin, H. R. Hart Jr and A. R. Gaddipati, J. Appl. Phys. 68 (1990) 2285.CrossRefGoogle Scholar
  9. 9.
    R. H. Arendt, A. R. Gaddipati, M. F. Garbanskas, E. I. Hall, H. R. Hart Jr, K. W. Lay, J. D. Livington, F. E. Luborsky and L. L. Schilling, MRS Proc. 99 (1991) 203.CrossRefGoogle Scholar
  10. 10.
    R. H. Arendt, M. F. Garbanskas, K. W. Lay and J. E. Tkaczyk, Phys. C. 176 (1991) 131.CrossRefGoogle Scholar
  11. 11.
    K. Kigimiya, S. Kawashima, D. Inoue and S. Adachi, Mater. Lett. 6 (1991) 131.Google Scholar
  12. 12.
    J. M. Ferreira, M. B. Maple, H. Zhou, R. R. Hake, B. W. Lee, C. L. Seeman, M. V. Kuric and R. P. Guertin, Appl. Phys. A 47 (1988) 105.CrossRefGoogle Scholar
  13. 13.
    B. W. Statt, Z. Wang, S. Bagheri and J. Rutter, Phys. C 183 (1991) 57.CrossRefGoogle Scholar
  14. 14.
    S. C. Peterson and M. J. Cima, J. Am. Ceram. Soc. 71 (1988) C458.CrossRefGoogle Scholar
  15. 15.
    T. Ishida, T. Sakuma, T. Sasaki and Y. Kawada, Jpn J. Appl Phys. 28 (1989) L559.CrossRefGoogle Scholar
  16. 16.
    B. A. Glowacki, Wai Lo, J. Yuan, J. Jackiewicz and W. Y. Liang, IEEE Trans. Appl. Supercond. 3 (1993) 953.CrossRefGoogle Scholar
  17. 17.
    J. R. Clem, Phys. C 153-55 (1988) 50.CrossRefGoogle Scholar
  18. 18.
    M. Tinkham and C. J. Lobb, in “Solid State Physics. Advances in Research and Applications”, edited by H. Ehrenreich and D. Turnbull, Vol. 42 (Academic Press, London, 1989) p. 91.Google Scholar
  19. 19.
    K. H. Muller, H. C. MacFarlane and R. Drive, Phys. C 158 (1989) 69.CrossRefGoogle Scholar
  20. 20.
    R. B. Goldfarb, M. Lelental and C. A. Thompson, in “Magnetic Susceptibility of Superconductors and Other Spin Systems”, edited by R. A. Hein, T. L. Francavilla and D. H. Liebenberg (Plenum Press, New York, 1991) p. 49.CrossRefGoogle Scholar
  21. 21.
    K. H. Muller, J. C. MacFarlane and R. Driver, Phys. C 158 (1989) 366.CrossRefGoogle Scholar
  22. 22.
    K. H. Muller, ibid. 159 (1989) 717.CrossRefGoogle Scholar
  23. 23.
    Idem, ibid. 168 (1990) 585.CrossRefGoogle Scholar
  24. 24.
    K. H. Muller, N. Nilolo and R. Driver, Phys. Rev. B 43 (1991) 7976.CrossRefGoogle Scholar
  25. 25.
    S. L. Shinde, J. Morrill, D. Goland, D. A. Chance and T. McGuire, ibid. 41 (1990) 8838.CrossRefGoogle Scholar
  26. 26.
    Wai Lo and B. A. Glowacki, Supercond. Sci. Technol. 4 (1991) S361.CrossRefGoogle Scholar
  27. 27.
    Idem, in “High Temperature Superconductors, Materials Aspects”, ICMC Topical Conference Proceedings, edited by H. C. Freyhardt, R. Flukiger and M. Peuckert (Informationsgesellschaft, Verpag, 1991) p. 1005.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Wai Lo
    • 1
  • D. N. Zheng
    • 1
  • B. A. Glowacki
    • 1
    • 2
  • A. M. Campbell
    • 1
  1. 1.IRC in SuperconductivityUniversity of CambridgeCambridgeUK
  2. 2.Department of Materials Science and MetallurgyCambridgeUK

Personalised recommendations