Finite element modelling of calendering — some aspects of the effects of temperature gradients and structure inhomogeneities
- 93 Downloads
- 6 Citations
Abstract
The compression of a paper web in a calender nip has been simulated using the finite element method. The mechanical properties of the paper were allowed to vary in the thickness and machine directions of the web. This was done in order to model the influence of temperature gradients as well as density variations (due to the presence of fibre floes) on the deformation behaviour in the nip. Paper was assumed to be an elastic-plastic material exhibiting strain hardening. The yielding behaviour was governed by the Drucker-Prager yield condition. Simulations of the deformation behaviour when paper was subjected to a temperature gradient, clearly revealed that the deformation gradually became more concentrated towards the surface layers as the temperature of the surface increased. This is in accordance with experimental results which indicate that temperature-gradient calendering promotes the surface properties, whereas the bulk of the structure is preserved. Modelling the deformation behaviour of a structure containing density variations reveals that the paper may contain an inhomogeneous strain distribution after unloading, i.e. after passage through the nip.
Keywords
Finite Element Method Temperature Gradient Element Modelling Finite Element Modelling Strain HardeningPreview
Unable to display preview. Download preview PDF.
References
- 1.R. H.Crotogino, Tappi J. 65(10) (1982) 97.Google Scholar
- 2.J. H.Vreeland, K. B.Jewitt and E. R.Ellis, in “Proceedings of the Tappi Coating Conference”, (Tappi Press, Atlanta, 1989) p. 179.Google Scholar
- 3.R. H.Crotogino and M. F.Gratton, in “Proceedings of the Tappi Paper Physics Conference”, (Tappi Press, Atlanta, 1987) p. 199.Google Scholar
- 4.J. D.Peel, in “Transactions of the IXth Fundamental Research Symposium”, Cambridge, Vol. 2 edited by C. F.Baker (Mechanical Engineering Publications, London, 1989) p. 979.Google Scholar
- 5.J. J. A.Rodal, Tappi J. 76(12) (1993) 63.Google Scholar
- 6.J. J. A.Rodal, in “Transactions of the IXth Fundamental Research Symposium”, Cambridge, Vol. 2 edited by C. F.Baker (Mechanical Engineering Publications, London, 1989) p. 1055.Google Scholar
- 7.
- 8.ABAQUS (Hibbitt, Karlsson and Sorensen, Inc., Version 5.2, Rhode Island, 1992).Google Scholar
- 9.G. A.Baum, in “Transactions of the Xth Fundamental Research Symposium”, Oxford, Vol. 1 edited by C. F.Baker (Pira International, Leatherhead, 1993) p. 52.Google Scholar
- 10.
- 11.
- 12.J. P.Holman, “Heat Transfer” (McGraw-Hill, New York, 1976).Google Scholar
- 13.
- 14.S. F.Keller, in “Proceedings of 77th Annual Meeting of the Technical Section CPPA”, (Technical Section, Canadian Pulp and Paper Association, Montreal, 1991) p. B89.Google Scholar
- 15.B.Norman, in “Paper Structure and Properties”, edited by J. A.Bristow and P.Kolseth (Marcel Dekker, New York, 1986) p. 132.Google Scholar
- 16.I. M.Kajanto, Paperi ja Puu 72 (1990) 600.Google Scholar
- 17.O.Steffner, Lic. Eng. thesis, Department of Pulp and Paper Chemistry and Technology, Royal Institute of Technology, Stockholm (1993).Google Scholar
- 18.
- 19.J.Skowronski, J. Pulp Paper Sci. 16(3) (1990) J102.Google Scholar