Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6311–6319 | Cite as

Estimate of polytype fractions and dislocation density in SiC before and after sintering in Si3N4 matrix

  • G. Pezzotti
  • S. Ueda
  • K. Niihara
  • T. Nishida
Article

Abstract

A quantitative characterization of polytype fractions and dislocation morphology and density is presented for two α-SiC powders. The tools were X-ray diffraction (XRD) and etch-pit analysis carried out before and after hot-isostatic-press (HIP) sintering in an Si3N4 matrix at 2050 °C under 180 MPa. Results are compared with data from transmission electron microscopy and electron diffraction previously obtained on the same powders. To avoid overlapping of the major XRD peaks with that of the Si3N4 matrix and to make possible the observation of the Si plane during etch-pit analysis in the powders after sintering, a chemical etching procedure to separate nitride and carbide phases without damage was developed. The morphology and density of pits and dislocations were analysed to get quantitative information about the crystal structures of the SiC crystallites and their modifications after the HIP cycle. The polytype fractions were found to be unchanged after sintering. It was also determined that polytypes 6H, 4H and 15R generally share part of the surface in a single crystallite rather than existing as single crystallites themselves, the 15R polytype generally being a hosted structure by a 6H or 4H matrix. A high density of dislocations (1013–1014cm−2) was found in both the SiC powders after HIP sintering compared with the raw materials.

Keywords

Transmission Electron Microscopy Carbide Nitride Dislocation Density Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Larker, J. Adlerborn and H. Bohman, SAE Technical Paper No. 770335 (Society of Automotive Engineers, 1977).Google Scholar
  2. 2.
    J. Heinrich and M. Boehmer, Ber. Dtsch. Keram. Ges. 61 (1984) 399.Google Scholar
  3. 3.
    K. Honma, H. Okada, T. Fujikawa and T. Tatsuno, Yogyo-Kyokai-Shi 95 (1987) 229.CrossRefGoogle Scholar
  4. 4.
    I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto and M. Koizumi, J. Am. Ceram. Soc. 72 (1989) 1656.CrossRefGoogle Scholar
  5. 5.
    G. Pezzotti, 76 (1993) 1313.Google Scholar
  6. 6.
    I. Tanaka, G. Pezzotti, K. Matsushita, Y. Miyamoto and T. Okamoto, J. Am. Ceram. Soc. 74 (1991) 752.CrossRefGoogle Scholar
  7. 7.
    I. Tanaka, G. Pezzotti, T. Okamoto and K. Niihara, J. Mater. Sci. 27 (1992) 4089.CrossRefGoogle Scholar
  8. 8.
    I. Tanaka, Y. Miyamoto and K. Niihara, J. Mater. Res. submitted.Google Scholar
  9. 9.
    G. Pezzotti, K. Noda, Y. Okamoto and T. Nishida, J. Mater. Sci. 28 (1993) 3080.CrossRefGoogle Scholar
  10. 10.
    G. Pezzotti, B.-T. Lee, T. Nishida and K. Hiraga, 28 (1993) 4787.Google Scholar
  11. 11.
    G. Pezzotti and T. Nishida, 29 (1994) 1765.Google Scholar
  12. 12.
    G. A. Boostma, W. F. Knippenberg and G. Verspui, J. Cryst. Growth 8 (1971) 341.CrossRefGoogle Scholar
  13. 13.
    W. F. Knippenberg and G. Verspui, Mater. Res. Bull. 4 (1969) S33.CrossRefGoogle Scholar
  14. 14.
    P. Krishna, R. C. Marshall and C. E. Ryan, J. Cryst. Growth 8 (1971) 132.CrossRefGoogle Scholar
  15. 15.
    P. Krishna and R. C. Marshall, ibid. 9 (1971) 319.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 11 (1971) 147.CrossRefGoogle Scholar
  17. 17.
    J. W. Faust Jr, in “Silicon Carbide” (Pergamon, New York, 1960) p. 403.Google Scholar
  18. 18.
    J. W. Faust Jr, Y. Tung and H. M. Liaw, in “Silicon Carbide 1973” (University of South Carolina Press, Columbia, SC, 1974) p. 215.Google Scholar
  19. 19.
    S. Amelinckx and G. Strumane, J. Appl. Phys. 31 (1960) 1359.CrossRefGoogle Scholar
  20. 20.
    Idem, in “Silicon Carbide” (Pergamon, New York, 1960) p. 162.Google Scholar
  21. 21.
    V. J. Jennings, Mater. Res. Bull. 4 (1969) S-199.Google Scholar
  22. 22.
    S. Yasuda and T. Nakamura, Tokai Denkyoku Giho 23 (1963) 16.Google Scholar
  23. 23.
    W. S. Seo, C. H. Pai, K. Koumoto and H. Yanagida, J. Jpn Ceram. Soc. 99 (1991) 443.CrossRefGoogle Scholar
  24. 24.
    S. Amelinckx, W. Bontinck and W. Dekeyser, Phil. Mag. 2 (1957) 1264.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Pezzotti
    • 1
  • S. Ueda
    • 2
  • K. Niihara
    • 2
  • T. Nishida
    • 3
  1. 1.Department of MaterialsToyohashi University of TechnologyToyohashiJapan
  2. 2.Institute of Scientific and Industrial Research (ISIR)Osaka UniversityOsakaJapan
  3. 3.Faculty of Polytechnique Science, Department of Materials EngineeringKyoto Institute of TechnologyKyotoJapan

Personalised recommendations