Advertisement

Journal of Materials Science

, Volume 29, Issue 23, pp 6306–6310 | Cite as

Synthesis and analysis of PbO-modified Bi-Sr-Ca-Cu-O superconductors

  • S. Bernik
  • M. Hrovat
  • M. Rozman
  • D. Kolar
Article

Abstract

High Tc superconducting materials based on a PbO-modified Bi-Sr-Ca-Cu-O system with various ratios between the oxides were prepared by calcination at 800 °C and firing at 855 °C. From X-ray powder diffraction analysis data, the ratio of low- and high-temperature phases was calculated. The material with the nominal composition Bi2Pb0.5Sr2Ca2.5Cu3.5Ox was chosen for further experimental work. Samples fired at 800 °C contain mostly the low-temperature phase (2212). Higher firing temperatures lead to the formation of the high Tc phase (2223) with Tc(R=0) over 100 K. Some samples were cold pressed and refired which increased the specific density to over 80% of the theoretical density. The composition of samples was investigated by X-ray powder diffraction analysis and by energy dispersive X-ray spectroscopy. The main phase in the material fired at 800 °C, is the low Tc phase 2212, and secondary phases are Ca2PbO4, unreacted CuO and traces of 2223 phase. At higher firing temperatures, the main phase is the high-temperature phase 2223. The material is still heterogeneous and contains Ca2PbO4.

Keywords

Oxide Polymer Calcination Experimental Work Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn J. Appl. Phys. 27 (1988) L209.CrossRefGoogle Scholar
  2. 2.
    H. Nobumasa, K. Shimizu, Y. Kitano and T. Kawai, ibid. 27 (1988) L846.CrossRefGoogle Scholar
  3. 3.
    T. Uzumaki, K. Yamanaka, N. Kamehara and K. Niwa, ibid. 28 (1989) L75.CrossRefGoogle Scholar
  4. 4.
    S. A. Agnihotry, P. Ghosal, K. C. Nagpal and S. Chandra, Supercond. Sci. Technol. 4 (1) (1991) 7.CrossRefGoogle Scholar
  5. 5.
    N. Knauf, J. Harnischmacher, R. Muller, R. Borowski, B. Roden and D. Wohlleben, Phys. C 173 (5–6) (1991) 414.CrossRefGoogle Scholar
  6. 6.
    R. J. Cava, B. Batlogg, S. A. Sunshine, T. Siegrist, R. M. Fleming, K. Rabe, L. F. Schneemayer, S. H. Glarum, S. Nakahara, R. C. Farow, J. J. Krajewski, S. M. Zahurak, J. W. Waszcak, J. H. Marshall, P. Marsh, L. W. Rupp Jr, W. F. Peck and E. A. Rietman, ibid. 153–155 (1) (1988) 560.CrossRefGoogle Scholar
  7. 7.
    S. Bernik, M. Hrovat and D. Kolar, in “Proceedings of the International Conference on Modern Aspects of Superconductivity”, ICMAS-89, edited by R. Suryanarayanan, Technology Transfer Series, series editor A. Niku-Lari (IITT-International, Paris, 1989) 127.Google Scholar
  8. 8.
    W. Lo, Y. L. Chen, T. B. Tang and R. Stevens, Br. Ceram. Soc. J. 89 (1990) 218.Google Scholar
  9. 9.
    T. W. Button, N. McN. Alford, J. D. Birchall, F. Wellhofer, C. E. Gough and D. A. O'Connor, Supercond. Sci. Technol. 2 (1989) 224.CrossRefGoogle Scholar
  10. 10.
    T. Asano, Y. Tanaka, M. Fukutomi, K. Jikihara and H. Maeda, Jpn J. Appl. Phys. 28 (1989) L595.CrossRefGoogle Scholar
  11. 11.
    C. J. Kim, S. J. L. Kang and D. Y. Won, J. Am. Ceram. Soc. 75 (1992) 570.CrossRefGoogle Scholar
  12. 12.
    A. Nozue, H. Nasu, K. Kamiya and K. Tanaka, J. Mater. Sci. 26 (1991) 4427.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Bernik
    • 1
  • M. Hrovat
    • 1
  • M. Rozman
    • 1
  • D. Kolar
    • 1
  1. 1.Joźef Stefan InstituteUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations