Journal of Materials Science

, Volume 29, Issue 23, pp 6231–6240 | Cite as

Diffusional penetration during diffusion-induced grain-boundary migration process in an Al-Zn couple

  • P. Zieba
  • A. Pawłowski


The existence of diffusion-induced grain-boundary migration (DIGM) has been re-examined by electron probe micro analysis and analytical electron microscopy in the aluminium substrate of Al-Zn diffusion couple annealed in the temperature range 395–535 K. The investigation revealed two basic kinds of DIGM: laminar and turbulent. The laminar kind occurs over the whole temperature range and is characterized by a small migration distance and large migration depth. The zinc enrichment at a sample surface is 4.0–5.0 wt% and gradually decreases with increasing depth. The turbulent kind is limited to annealing temperatures above 450 K. In this case, the width of the alloyed zone is much greater, close to the surface of sample and then dramatically decreases, showing a behaviour similar to the laminar morphology. The zinc content at the surface of sample is 8.0–9.0 wt%. The diffusivities of DIGM calculated based on Cahn's equation agree well with the values of stationary grain boundary in diluted AlZn alloys. Evidence for the existence of DIGM was the asymmetry of the zinc profile with regard to the final position of the boundary. Microanalytical scan across the alloyed zone showed an abrupt change of the zinc concentration at the moving boundary. This suggests that the role of volume diffusion during DIGM is not so important and a considerable chemical contribution to the total driving force should exist.


Zinc Concentration Diffusion Couple Zinc Content Aluminium Substrate Volume Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hillert and G. R. Purdy, Acta Metall. 26 (1978) 33.CrossRefGoogle Scholar
  2. 2.
    Li Chongmo and M. Hillert, ibid. 29 (1981) 1949.CrossRefGoogle Scholar
  3. 3.
    Z. S. Yu and P. G. Shewmon, Metall. Trans. 13A (1981) 1567.Google Scholar
  4. 4.
    P. G. Shewmon and Z. S. Yu, ibid. 14A (1983) 1579.CrossRefGoogle Scholar
  5. 5.
    G. Meyrick, V. S. Iyer and P. G. Shewmon, Acta Metall. 33 (1985) 273.CrossRefGoogle Scholar
  6. 6.
    V. S. Iyer, P. G. Shewmon and G. Meyrick, Scripts Metall. 20 (1986) 231.CrossRefGoogle Scholar
  7. 7.
    Li Chongmo and M. Hillert, Acta Metall. 30 (1982) 1133.CrossRefGoogle Scholar
  8. 8.
    J. W. Cahn, J. D. Pan and R. W. Baluffi, Scripta Metall. 13 (1979) 503.CrossRefGoogle Scholar
  9. 9.
    S. Mayer, PhD thesis, University of Stuttgart (1987).Google Scholar
  10. 10.
    T. J. A. Den Droeder, Thin Solid Films 124 (1985) 135.CrossRefGoogle Scholar
  11. 11.
    F. S. Chen and A. H. King, Acta Metall. 36 (1988) 2827.CrossRefGoogle Scholar
  12. 12.
    Z. M. Guan, G. X. Liu, D. B. Williams and M. R. Notis, ibid. 37 (1989) 519.CrossRefGoogle Scholar
  13. 13.
    R. Schmelze, G. Giakupian, T. Muschik, W. Gust and R. A. Fournelle, Acta Metall. Mater. 40 (1992) 997.CrossRefGoogle Scholar
  14. 14.
    F. J. A. Den Broeder and S. Nakahara, Scripta Metall. 17 (1983) 399.CrossRefGoogle Scholar
  15. 15.
    D. Liu, W. A. Miller and K. T. Aust, Acta Metall. 37 (1989) 3367.CrossRefGoogle Scholar
  16. 16.
    C. R. M. Grovenor, ibid. 33 (1985) 579.CrossRefGoogle Scholar
  17. 17.
    V. N. Lapovak, V. I. Novikov, S. V. Svirida, A. N. Semenikhin and L. I. Trusov, Sov. Phys. Solid State 25 (1983) 1063.Google Scholar
  18. 18.
    C. R. M. Grovenor, D. A. Smith and M. J. Goringe, Thin Solid Films 74 (1980) 269CrossRefGoogle Scholar
  19. 19.
    K. Tashiro and G. R. Purdy, Scripta Metall. 21 (1983) 455.CrossRefGoogle Scholar
  20. 20.
    G. R. Purdy and K. Tashiro, in “Interface Migration and Control of Microstructure”, edited by D. A. Smith, A. H. King and C. S. Pande (American Soc. Metals, Metals Park, OH, 1986) p. 33.Google Scholar
  21. 21.
    S. Varadarajan and R. A. Fournelle, Acta Metall. Mater. 40 (1992) 1847.CrossRefGoogle Scholar
  22. 22.
    R. Lück, Z. Metallkde 66 (1975) 488.Google Scholar
  23. 23.
    G. Cliff and G. W. Lorimer, J. Microscopy 103 (1975) 203.CrossRefGoogle Scholar
  24. 24.
    J. W. Cahn, Acta Metall. 7 (1959) 18.CrossRefGoogle Scholar
  25. 25.
    A. H. King, Int. Mater. Rev. 32 (1987) 173.CrossRefGoogle Scholar
  26. 26.
    J. E. Hilliard, B. A. Averbach and M. Cohen, Acta Metall. 7 (1959) 86.CrossRefGoogle Scholar
  27. 27.
    R. W. Baluffi and J. W. Cahn, ibid. 29 (1981) 493.CrossRefGoogle Scholar
  28. 28.
    D. A. Smith and A. H. King, Philos. Mag. A44 (1981) 333.CrossRefGoogle Scholar
  29. 29.
    P. Zieba and A. Pawłowski, to be published in Mat. Sci. Eng. (1994).Google Scholar
  30. 30.
    A. Pawłowski, P. Zięba and J. Morgiel, Arch. Metall. 31 (1986) 287.Google Scholar
  31. 31.
    P. Zięba, Arch. Metall. 36 (1991) 65.Google Scholar
  32. 32.
    A. Haessner, Kristall Technik 9 (1974) 1371.CrossRefGoogle Scholar
  33. 33.
    K. N. Tu and D. B. Turnbull, Scripta Metall. 1 (1967) 173.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Zieba
    • 1
  • A. Pawłowski
    • 1
  1. 1.Institute of Metallurgy and Materials Science of the Polish Academy of SciencesCracowPoland

Personalised recommendations